A comprehensive evaluation of entropy-based directionality estimation method
In network systems, directional information is crucial, but constructing directional networks presents significant challenges. Recently, a method for extracting directionality from undirected networks based on information theory has been proposed. However, a comprehensive assessment of the efficacy...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Physical Society 2023-09, Vol.83 (6), p.499-510 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 510 |
---|---|
container_issue | 6 |
container_start_page | 499 |
container_title | Journal of the Korean Physical Society |
container_volume | 83 |
creator | Kim, Donghyeok Lee, Eun Kang, Jiyoung |
description | In network systems, directional information is crucial, but constructing directional networks presents significant challenges. Recently, a method for extracting directionality from undirected networks based on information theory has been proposed. However, a comprehensive assessment of the efficacy of this approach has been delayed. In this study, we utilized the World Trade Web (WTW) network, employed in the original paper, to assess the method’s validity with various Rényi entropy parameters and three different edge removals based on ascending, descending, and random sorting of edge weights. Our results demonstrate that the initial evaluation on WTW resulting in high accuracy and precision is correlated with a substantial number of reciprocal edges, hence the high-level performance scores decrease when edge removal occurs. In contrast, the entropy-based directionality extraction method achieved low precision for the entire brain networks of Drosophila larva, and this network contains a limited number of reciprocal edges. These findings call for a caution and systematic performance evaluation when employing the entropy-based directionality extraction method. |
doi_str_mv | 10.1007/s40042-023-00903-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2866413748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866413748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-79bbbbd3fa9154c2151b7cb22428f7b046cf93925679f4edd38095d75a1502953</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhF4mxYv2L7WFW8pEpc4Gw5jkNTtXGwk1b997gEiRt72cN-M5odhG4J3BMA-ZA4AKcYKMMAGhg-nKEZ0bLESlB-jmbAJMdcKX6JrlLaZJoxWc7QalG4sOujX_sutXtf-L3djnZoQ1eEpvDdEEN_xJVNvi7qNnp3OtltOxwLn4Z2N6E7P6xDfY0uGrtN_uZ3z9HH0-P78gWv3p5fl4sVdlTCgKWu8tSssZoI7igRpJKuopRT1cgKeOkazTQVpdQN93XNFGhRS2GJAKoFm6O7ybeP4WvMMcwmjDGnSoaqsuQkP6syRSfKxZBS9I3pY84bj4aAObVmptZMbs38tGYOWcQmUcpw9-njn_U_qm84LnCi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866413748</pqid></control><display><type>article</type><title>A comprehensive evaluation of entropy-based directionality estimation method</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kim, Donghyeok ; Lee, Eun ; Kang, Jiyoung</creator><creatorcontrib>Kim, Donghyeok ; Lee, Eun ; Kang, Jiyoung</creatorcontrib><description>In network systems, directional information is crucial, but constructing directional networks presents significant challenges. Recently, a method for extracting directionality from undirected networks based on information theory has been proposed. However, a comprehensive assessment of the efficacy of this approach has been delayed. In this study, we utilized the World Trade Web (WTW) network, employed in the original paper, to assess the method’s validity with various Rényi entropy parameters and three different edge removals based on ascending, descending, and random sorting of edge weights. Our results demonstrate that the initial evaluation on WTW resulting in high accuracy and precision is correlated with a substantial number of reciprocal edges, hence the high-level performance scores decrease when edge removal occurs. In contrast, the entropy-based directionality extraction method achieved low precision for the entire brain networks of Drosophila larva, and this network contains a limited number of reciprocal edges. These findings call for a caution and systematic performance evaluation when employing the entropy-based directionality extraction method.</description><identifier>ISSN: 0374-4884</identifier><identifier>EISSN: 1976-8524</identifier><identifier>DOI: 10.1007/s40042-023-00903-w</identifier><language>eng</language><publisher>Seoul: The Korean Physical Society</publisher><subject>Entropy ; Entropy (Information theory) ; Information theory ; Mathematical and Computational Physics ; Networks ; Original Paper - Cross-Disciplinary Physics and Related Areas of Science and Technology ; Particle and Nuclear Physics ; Performance evaluation ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Journal of the Korean Physical Society, 2023-09, Vol.83 (6), p.499-510</ispartof><rights>The Korean Physical Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-79bbbbd3fa9154c2151b7cb22428f7b046cf93925679f4edd38095d75a1502953</cites><orcidid>0000-0003-2893-1512 ; 0009-0008-9984-6407 ; 0000-0003-3860-3213</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40042-023-00903-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40042-023-00903-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kim, Donghyeok</creatorcontrib><creatorcontrib>Lee, Eun</creatorcontrib><creatorcontrib>Kang, Jiyoung</creatorcontrib><title>A comprehensive evaluation of entropy-based directionality estimation method</title><title>Journal of the Korean Physical Society</title><addtitle>J. Korean Phys. Soc</addtitle><description>In network systems, directional information is crucial, but constructing directional networks presents significant challenges. Recently, a method for extracting directionality from undirected networks based on information theory has been proposed. However, a comprehensive assessment of the efficacy of this approach has been delayed. In this study, we utilized the World Trade Web (WTW) network, employed in the original paper, to assess the method’s validity with various Rényi entropy parameters and three different edge removals based on ascending, descending, and random sorting of edge weights. Our results demonstrate that the initial evaluation on WTW resulting in high accuracy and precision is correlated with a substantial number of reciprocal edges, hence the high-level performance scores decrease when edge removal occurs. In contrast, the entropy-based directionality extraction method achieved low precision for the entire brain networks of Drosophila larva, and this network contains a limited number of reciprocal edges. These findings call for a caution and systematic performance evaluation when employing the entropy-based directionality extraction method.</description><subject>Entropy</subject><subject>Entropy (Information theory)</subject><subject>Information theory</subject><subject>Mathematical and Computational Physics</subject><subject>Networks</subject><subject>Original Paper - Cross-Disciplinary Physics and Related Areas of Science and Technology</subject><subject>Particle and Nuclear Physics</subject><subject>Performance evaluation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>0374-4884</issn><issn>1976-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwBzhF4mxYv2L7WFW8pEpc4Gw5jkNTtXGwk1b997gEiRt72cN-M5odhG4J3BMA-ZA4AKcYKMMAGhg-nKEZ0bLESlB-jmbAJMdcKX6JrlLaZJoxWc7QalG4sOujX_sutXtf-L3djnZoQ1eEpvDdEEN_xJVNvi7qNnp3OtltOxwLn4Z2N6E7P6xDfY0uGrtN_uZ3z9HH0-P78gWv3p5fl4sVdlTCgKWu8tSssZoI7igRpJKuopRT1cgKeOkazTQVpdQN93XNFGhRS2GJAKoFm6O7ybeP4WvMMcwmjDGnSoaqsuQkP6syRSfKxZBS9I3pY84bj4aAObVmptZMbs38tGYOWcQmUcpw9-njn_U_qm84LnCi</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Kim, Donghyeok</creator><creator>Lee, Eun</creator><creator>Kang, Jiyoung</creator><general>The Korean Physical Society</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2893-1512</orcidid><orcidid>https://orcid.org/0009-0008-9984-6407</orcidid><orcidid>https://orcid.org/0000-0003-3860-3213</orcidid></search><sort><creationdate>20230901</creationdate><title>A comprehensive evaluation of entropy-based directionality estimation method</title><author>Kim, Donghyeok ; Lee, Eun ; Kang, Jiyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-79bbbbd3fa9154c2151b7cb22428f7b046cf93925679f4edd38095d75a1502953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Entropy</topic><topic>Entropy (Information theory)</topic><topic>Information theory</topic><topic>Mathematical and Computational Physics</topic><topic>Networks</topic><topic>Original Paper - Cross-Disciplinary Physics and Related Areas of Science and Technology</topic><topic>Particle and Nuclear Physics</topic><topic>Performance evaluation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Donghyeok</creatorcontrib><creatorcontrib>Lee, Eun</creatorcontrib><creatorcontrib>Kang, Jiyoung</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Korean Physical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Donghyeok</au><au>Lee, Eun</au><au>Kang, Jiyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comprehensive evaluation of entropy-based directionality estimation method</atitle><jtitle>Journal of the Korean Physical Society</jtitle><stitle>J. Korean Phys. Soc</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>83</volume><issue>6</issue><spage>499</spage><epage>510</epage><pages>499-510</pages><issn>0374-4884</issn><eissn>1976-8524</eissn><abstract>In network systems, directional information is crucial, but constructing directional networks presents significant challenges. Recently, a method for extracting directionality from undirected networks based on information theory has been proposed. However, a comprehensive assessment of the efficacy of this approach has been delayed. In this study, we utilized the World Trade Web (WTW) network, employed in the original paper, to assess the method’s validity with various Rényi entropy parameters and three different edge removals based on ascending, descending, and random sorting of edge weights. Our results demonstrate that the initial evaluation on WTW resulting in high accuracy and precision is correlated with a substantial number of reciprocal edges, hence the high-level performance scores decrease when edge removal occurs. In contrast, the entropy-based directionality extraction method achieved low precision for the entire brain networks of Drosophila larva, and this network contains a limited number of reciprocal edges. These findings call for a caution and systematic performance evaluation when employing the entropy-based directionality extraction method.</abstract><cop>Seoul</cop><pub>The Korean Physical Society</pub><doi>10.1007/s40042-023-00903-w</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2893-1512</orcidid><orcidid>https://orcid.org/0009-0008-9984-6407</orcidid><orcidid>https://orcid.org/0000-0003-3860-3213</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0374-4884 |
ispartof | Journal of the Korean Physical Society, 2023-09, Vol.83 (6), p.499-510 |
issn | 0374-4884 1976-8524 |
language | eng |
recordid | cdi_proquest_journals_2866413748 |
source | SpringerLink Journals - AutoHoldings |
subjects | Entropy Entropy (Information theory) Information theory Mathematical and Computational Physics Networks Original Paper - Cross-Disciplinary Physics and Related Areas of Science and Technology Particle and Nuclear Physics Performance evaluation Physics Physics and Astronomy Theoretical |
title | A comprehensive evaluation of entropy-based directionality estimation method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comprehensive%20evaluation%20of%20entropy-based%20directionality%20estimation%20method&rft.jtitle=Journal%20of%20the%20Korean%20Physical%20Society&rft.au=Kim,%20Donghyeok&rft.date=2023-09-01&rft.volume=83&rft.issue=6&rft.spage=499&rft.epage=510&rft.pages=499-510&rft.issn=0374-4884&rft.eissn=1976-8524&rft_id=info:doi/10.1007/s40042-023-00903-w&rft_dat=%3Cproquest_cross%3E2866413748%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866413748&rft_id=info:pmid/&rfr_iscdi=true |