Strength Prediction of Notched Foamed Concrete Beam Strengthened with KFRP Plates under Flexural Load

An experimental study to investigate the load at failure, failure mechanism, and crack propagation of a notched foamed concrete beam externally reinforced with a 200 mm length kenaf fiber reinforced polymer (KFRP) and tested under a four-point bending test (4PBT) is presented. In this study, the not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal for science and engineering (2011) 2023-10, Vol.48 (10), p.13059-13071
Hauptverfasser: Maulana, M. R., Sugiman, S., Ahmad, H., Jaini, Z. M., Mansor, Hazrina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An experimental study to investigate the load at failure, failure mechanism, and crack propagation of a notched foamed concrete beam externally reinforced with a 200 mm length kenaf fiber reinforced polymer (KFRP) and tested under a four-point bending test (4PBT) is presented. In this study, the notch depth was varied. KFRP plates were fabricated by placing weaved yarns and smeared with Sika S31. From the experimental work, the shear failure and FRP rupture were seen. Various normalized notch depths significantly influenced allowable ultimate displacement, crack initiation, and failure modes. Following the preceding experimental series, a 2-D numerical modeling framework was developed to simulate the failure of the KFRP-strengthened foamed concrete beam. Independent tests had been carried out to determine material properties of the foamed concrete beam (i.e., un-notched beam strength, σ o and fracture energy, G c ), later they were incorporated within a traction–separation relationship as a constitutive model of finite element modeling. The fracture energy values were calculated using Hillerborg’s model, which agrees well with the previous literature. Extended finite element model techniques were adopted for the strength prediction works. A good agreement was found between the predicted and experimental results with discrepancies of less than 15%.
ISSN:2193-567X
1319-8025
2191-4281
DOI:10.1007/s13369-023-07688-x