Shortest path interdiction problem with convex piecewise-linear costs
This paper addresses a special kind of network optimization interdiction problems, called the shortest path interdiction problem. The problem is a natural extension of the well-known shortest path problem in the presence of an adversary. The adversary is capable of increasing arc lengths under budge...
Gespeichert in:
Veröffentlicht in: | Computational & applied mathematics 2023-10, Vol.42 (7), Article 309 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Computational & applied mathematics |
container_volume | 42 |
creator | Tayyebi, Javad Deaconu, Adrian M. Bigdeli, Hamid Niksirat, Malihe |
description | This paper addresses a special kind of network optimization interdiction problems, called the shortest path interdiction problem. The problem is a natural extension of the well-known shortest path problem in the presence of an adversary. The adversary is capable of increasing arc lengths under budget and bound constraints in a way that the shortest path length between two prescribed nodes becomes large as much as possible. This paper considers the problem in the case that the increment costs are convex piecewise-linear functions. It presents an algorithm which solve the problem in polynomial time. An applicable example and several randomly generated instances are presented to evaluate the performance and validity of the proposed algorithm. |
doi_str_mv | 10.1007/s40314-023-02445-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2866413536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866413536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-8f1d93a6f4778809e1060fa708cfa6fc77bc3b5fdd8da4b6850d66894223b1c23</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgrf4BTwueoy8fm6RHKdUKBQ_qOWSziU1pd9cktfrvja7gzcPjwbyZecMgdEngmgDIm8SBEY6BsjKc1xiO0IQokBgY0GM0oZQpzASwU3SW0gaAScL5BC2e1n3MLuVqMHldhS672AabQ99VQ-ybrdtVh1Autu_e3Uc1BGfdISSHt6FzJhY85XSOTrzZJnfxu6fo5W7xPF_i1eP9w_x2hS2VkLHypJ0xIzyXUimYOQICvJGgrC-olbKxrKl926rW8EaoGloh1IyX9A2xlE3R1ehbor3tS2q96fexKy81VUJwwmomCouOLBv7lKLzeohhZ-KnJqC_69JjXbrUpX_q0lBEbBSlQu5eXfyz_kf1BSxAbYU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866413536</pqid></control><display><type>article</type><title>Shortest path interdiction problem with convex piecewise-linear costs</title><source>Springer Nature - Complete Springer Journals</source><creator>Tayyebi, Javad ; Deaconu, Adrian M. ; Bigdeli, Hamid ; Niksirat, Malihe</creator><creatorcontrib>Tayyebi, Javad ; Deaconu, Adrian M. ; Bigdeli, Hamid ; Niksirat, Malihe</creatorcontrib><description>This paper addresses a special kind of network optimization interdiction problems, called the shortest path interdiction problem. The problem is a natural extension of the well-known shortest path problem in the presence of an adversary. The adversary is capable of increasing arc lengths under budget and bound constraints in a way that the shortest path length between two prescribed nodes becomes large as much as possible. This paper considers the problem in the case that the increment costs are convex piecewise-linear functions. It presents an algorithm which solve the problem in polynomial time. An applicable example and several randomly generated instances are presented to evaluate the performance and validity of the proposed algorithm.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-023-02445-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Applications of Mathematics ; Applied physics ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Linear functions ; Mathematical analysis ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Optimization ; Polynomials ; Shortest-path problems</subject><ispartof>Computational & applied mathematics, 2023-10, Vol.42 (7), Article 309</ispartof><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-8f1d93a6f4778809e1060fa708cfa6fc77bc3b5fdd8da4b6850d66894223b1c23</cites><orcidid>0000-0002-7559-3870</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-023-02445-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-023-02445-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Tayyebi, Javad</creatorcontrib><creatorcontrib>Deaconu, Adrian M.</creatorcontrib><creatorcontrib>Bigdeli, Hamid</creatorcontrib><creatorcontrib>Niksirat, Malihe</creatorcontrib><title>Shortest path interdiction problem with convex piecewise-linear costs</title><title>Computational & applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>This paper addresses a special kind of network optimization interdiction problems, called the shortest path interdiction problem. The problem is a natural extension of the well-known shortest path problem in the presence of an adversary. The adversary is capable of increasing arc lengths under budget and bound constraints in a way that the shortest path length between two prescribed nodes becomes large as much as possible. This paper considers the problem in the case that the increment costs are convex piecewise-linear functions. It presents an algorithm which solve the problem in polynomial time. An applicable example and several randomly generated instances are presented to evaluate the performance and validity of the proposed algorithm.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Linear functions</subject><subject>Mathematical analysis</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Shortest-path problems</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgrf4BTwueoy8fm6RHKdUKBQ_qOWSziU1pd9cktfrvja7gzcPjwbyZecMgdEngmgDIm8SBEY6BsjKc1xiO0IQokBgY0GM0oZQpzASwU3SW0gaAScL5BC2e1n3MLuVqMHldhS672AabQ99VQ-ybrdtVh1Autu_e3Uc1BGfdISSHt6FzJhY85XSOTrzZJnfxu6fo5W7xPF_i1eP9w_x2hS2VkLHypJ0xIzyXUimYOQICvJGgrC-olbKxrKl926rW8EaoGloh1IyX9A2xlE3R1ehbor3tS2q96fexKy81VUJwwmomCouOLBv7lKLzeohhZ-KnJqC_69JjXbrUpX_q0lBEbBSlQu5eXfyz_kf1BSxAbYU</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Tayyebi, Javad</creator><creator>Deaconu, Adrian M.</creator><creator>Bigdeli, Hamid</creator><creator>Niksirat, Malihe</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7559-3870</orcidid></search><sort><creationdate>20231001</creationdate><title>Shortest path interdiction problem with convex piecewise-linear costs</title><author>Tayyebi, Javad ; Deaconu, Adrian M. ; Bigdeli, Hamid ; Niksirat, Malihe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-8f1d93a6f4778809e1060fa708cfa6fc77bc3b5fdd8da4b6850d66894223b1c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Linear functions</topic><topic>Mathematical analysis</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Shortest-path problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tayyebi, Javad</creatorcontrib><creatorcontrib>Deaconu, Adrian M.</creatorcontrib><creatorcontrib>Bigdeli, Hamid</creatorcontrib><creatorcontrib>Niksirat, Malihe</creatorcontrib><collection>CrossRef</collection><jtitle>Computational & applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tayyebi, Javad</au><au>Deaconu, Adrian M.</au><au>Bigdeli, Hamid</au><au>Niksirat, Malihe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shortest path interdiction problem with convex piecewise-linear costs</atitle><jtitle>Computational & applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>42</volume><issue>7</issue><artnum>309</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>This paper addresses a special kind of network optimization interdiction problems, called the shortest path interdiction problem. The problem is a natural extension of the well-known shortest path problem in the presence of an adversary. The adversary is capable of increasing arc lengths under budget and bound constraints in a way that the shortest path length between two prescribed nodes becomes large as much as possible. This paper considers the problem in the case that the increment costs are convex piecewise-linear functions. It presents an algorithm which solve the problem in polynomial time. An applicable example and several randomly generated instances are presented to evaluate the performance and validity of the proposed algorithm.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-023-02445-0</doi><orcidid>https://orcid.org/0000-0002-7559-3870</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2238-3603 |
ispartof | Computational & applied mathematics, 2023-10, Vol.42 (7), Article 309 |
issn | 2238-3603 1807-0302 |
language | eng |
recordid | cdi_proquest_journals_2866413536 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Applications of Mathematics Applied physics Computational mathematics Computational Mathematics and Numerical Analysis Linear functions Mathematical analysis Mathematical Applications in Computer Science Mathematical Applications in the Physical Sciences Mathematics Mathematics and Statistics Optimization Polynomials Shortest-path problems |
title | Shortest path interdiction problem with convex piecewise-linear costs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A19%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shortest%20path%20interdiction%20problem%20with%20convex%20piecewise-linear%20costs&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Tayyebi,%20Javad&rft.date=2023-10-01&rft.volume=42&rft.issue=7&rft.artnum=309&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-023-02445-0&rft_dat=%3Cproquest_cross%3E2866413536%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866413536&rft_id=info:pmid/&rfr_iscdi=true |