Shortest path interdiction problem with convex piecewise-linear costs

This paper addresses a special kind of network optimization interdiction problems, called the shortest path interdiction problem. The problem is a natural extension of the well-known shortest path problem in the presence of an adversary. The adversary is capable of increasing arc lengths under budge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational & applied mathematics 2023-10, Vol.42 (7), Article 309
Hauptverfasser: Tayyebi, Javad, Deaconu, Adrian M., Bigdeli, Hamid, Niksirat, Malihe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Computational & applied mathematics
container_volume 42
creator Tayyebi, Javad
Deaconu, Adrian M.
Bigdeli, Hamid
Niksirat, Malihe
description This paper addresses a special kind of network optimization interdiction problems, called the shortest path interdiction problem. The problem is a natural extension of the well-known shortest path problem in the presence of an adversary. The adversary is capable of increasing arc lengths under budget and bound constraints in a way that the shortest path length between two prescribed nodes becomes large as much as possible. This paper considers the problem in the case that the increment costs are convex piecewise-linear functions. It presents an algorithm which solve the problem in polynomial time. An applicable example and several randomly generated instances are presented to evaluate the performance and validity of the proposed algorithm.
doi_str_mv 10.1007/s40314-023-02445-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2866413536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866413536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-8f1d93a6f4778809e1060fa708cfa6fc77bc3b5fdd8da4b6850d66894223b1c23</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgrf4BTwueoy8fm6RHKdUKBQ_qOWSziU1pd9cktfrvja7gzcPjwbyZecMgdEngmgDIm8SBEY6BsjKc1xiO0IQokBgY0GM0oZQpzASwU3SW0gaAScL5BC2e1n3MLuVqMHldhS672AabQ99VQ-ybrdtVh1Autu_e3Uc1BGfdISSHt6FzJhY85XSOTrzZJnfxu6fo5W7xPF_i1eP9w_x2hS2VkLHypJ0xIzyXUimYOQICvJGgrC-olbKxrKl926rW8EaoGloh1IyX9A2xlE3R1ehbor3tS2q96fexKy81VUJwwmomCouOLBv7lKLzeohhZ-KnJqC_69JjXbrUpX_q0lBEbBSlQu5eXfyz_kf1BSxAbYU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866413536</pqid></control><display><type>article</type><title>Shortest path interdiction problem with convex piecewise-linear costs</title><source>Springer Nature - Complete Springer Journals</source><creator>Tayyebi, Javad ; Deaconu, Adrian M. ; Bigdeli, Hamid ; Niksirat, Malihe</creator><creatorcontrib>Tayyebi, Javad ; Deaconu, Adrian M. ; Bigdeli, Hamid ; Niksirat, Malihe</creatorcontrib><description>This paper addresses a special kind of network optimization interdiction problems, called the shortest path interdiction problem. The problem is a natural extension of the well-known shortest path problem in the presence of an adversary. The adversary is capable of increasing arc lengths under budget and bound constraints in a way that the shortest path length between two prescribed nodes becomes large as much as possible. This paper considers the problem in the case that the increment costs are convex piecewise-linear functions. It presents an algorithm which solve the problem in polynomial time. An applicable example and several randomly generated instances are presented to evaluate the performance and validity of the proposed algorithm.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-023-02445-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Applications of Mathematics ; Applied physics ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Linear functions ; Mathematical analysis ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Optimization ; Polynomials ; Shortest-path problems</subject><ispartof>Computational &amp; applied mathematics, 2023-10, Vol.42 (7), Article 309</ispartof><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-8f1d93a6f4778809e1060fa708cfa6fc77bc3b5fdd8da4b6850d66894223b1c23</cites><orcidid>0000-0002-7559-3870</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-023-02445-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-023-02445-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Tayyebi, Javad</creatorcontrib><creatorcontrib>Deaconu, Adrian M.</creatorcontrib><creatorcontrib>Bigdeli, Hamid</creatorcontrib><creatorcontrib>Niksirat, Malihe</creatorcontrib><title>Shortest path interdiction problem with convex piecewise-linear costs</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>This paper addresses a special kind of network optimization interdiction problems, called the shortest path interdiction problem. The problem is a natural extension of the well-known shortest path problem in the presence of an adversary. The adversary is capable of increasing arc lengths under budget and bound constraints in a way that the shortest path length between two prescribed nodes becomes large as much as possible. This paper considers the problem in the case that the increment costs are convex piecewise-linear functions. It presents an algorithm which solve the problem in polynomial time. An applicable example and several randomly generated instances are presented to evaluate the performance and validity of the proposed algorithm.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Linear functions</subject><subject>Mathematical analysis</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Shortest-path problems</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgrf4BTwueoy8fm6RHKdUKBQ_qOWSziU1pd9cktfrvja7gzcPjwbyZecMgdEngmgDIm8SBEY6BsjKc1xiO0IQokBgY0GM0oZQpzASwU3SW0gaAScL5BC2e1n3MLuVqMHldhS672AabQ99VQ-ybrdtVh1Autu_e3Uc1BGfdISSHt6FzJhY85XSOTrzZJnfxu6fo5W7xPF_i1eP9w_x2hS2VkLHypJ0xIzyXUimYOQICvJGgrC-olbKxrKl926rW8EaoGloh1IyX9A2xlE3R1ehbor3tS2q96fexKy81VUJwwmomCouOLBv7lKLzeohhZ-KnJqC_69JjXbrUpX_q0lBEbBSlQu5eXfyz_kf1BSxAbYU</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Tayyebi, Javad</creator><creator>Deaconu, Adrian M.</creator><creator>Bigdeli, Hamid</creator><creator>Niksirat, Malihe</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7559-3870</orcidid></search><sort><creationdate>20231001</creationdate><title>Shortest path interdiction problem with convex piecewise-linear costs</title><author>Tayyebi, Javad ; Deaconu, Adrian M. ; Bigdeli, Hamid ; Niksirat, Malihe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-8f1d93a6f4778809e1060fa708cfa6fc77bc3b5fdd8da4b6850d66894223b1c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Linear functions</topic><topic>Mathematical analysis</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Shortest-path problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tayyebi, Javad</creatorcontrib><creatorcontrib>Deaconu, Adrian M.</creatorcontrib><creatorcontrib>Bigdeli, Hamid</creatorcontrib><creatorcontrib>Niksirat, Malihe</creatorcontrib><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tayyebi, Javad</au><au>Deaconu, Adrian M.</au><au>Bigdeli, Hamid</au><au>Niksirat, Malihe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shortest path interdiction problem with convex piecewise-linear costs</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>42</volume><issue>7</issue><artnum>309</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>This paper addresses a special kind of network optimization interdiction problems, called the shortest path interdiction problem. The problem is a natural extension of the well-known shortest path problem in the presence of an adversary. The adversary is capable of increasing arc lengths under budget and bound constraints in a way that the shortest path length between two prescribed nodes becomes large as much as possible. This paper considers the problem in the case that the increment costs are convex piecewise-linear functions. It presents an algorithm which solve the problem in polynomial time. An applicable example and several randomly generated instances are presented to evaluate the performance and validity of the proposed algorithm.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-023-02445-0</doi><orcidid>https://orcid.org/0000-0002-7559-3870</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2238-3603
ispartof Computational & applied mathematics, 2023-10, Vol.42 (7), Article 309
issn 2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_2866413536
source Springer Nature - Complete Springer Journals
subjects Algorithms
Applications of Mathematics
Applied physics
Computational mathematics
Computational Mathematics and Numerical Analysis
Linear functions
Mathematical analysis
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
Optimization
Polynomials
Shortest-path problems
title Shortest path interdiction problem with convex piecewise-linear costs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A19%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shortest%20path%20interdiction%20problem%20with%20convex%20piecewise-linear%20costs&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Tayyebi,%20Javad&rft.date=2023-10-01&rft.volume=42&rft.issue=7&rft.artnum=309&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-023-02445-0&rft_dat=%3Cproquest_cross%3E2866413536%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866413536&rft_id=info:pmid/&rfr_iscdi=true