Viscous Approximations of Non-Convex Sweeping Processes in the Space of Regulated Functions

Vanishing viscosity approximations are considered here for discontinuous sweeping processes with non-convex constraints. It is shown that they are well-posed for sufficiently small viscosity parameters, and that their solutions converge pointwise, as the viscosity parameter tends to zero, to the lef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Set-valued and variational analysis 2023-12, Vol.31 (4), Article 34
Hauptverfasser: Krejčí, Pavel, Monteiro, Giselle A., Recupero, Vincenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Set-valued and variational analysis
container_volume 31
creator Krejčí, Pavel
Monteiro, Giselle A.
Recupero, Vincenzo
description Vanishing viscosity approximations are considered here for discontinuous sweeping processes with non-convex constraints. It is shown that they are well-posed for sufficiently small viscosity parameters, and that their solutions converge pointwise, as the viscosity parameter tends to zero, to the left-continuous solution to the sweeping process in the Kurzweil integral setting. The convergence is uniform if the input is continuous.
doi_str_mv 10.1007/s11228-023-00695-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2866413140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866413140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-aa7921da5f43b874611038167e0ff16faaa4758d4f58b075d314bbe8ff0320fa3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOdhK7Y1XxJVWAKLAwWE5il1TFDnYC7b_HbRFsTHfD-7ynexA6pXBOAcRFpJQxSYBxAlCMcrLeQwMqhSCQZ3T_d-f8EB3FuEgMwIgO0OtLEyvfRzxu2-BXzbvuGu8i9hbfeUcm3n2aFZ59GdM2bo4fgq9MjCbixuHuzeBZqyuzST-aeb_UnanxVe-qbckxOrB6Gc3Jzxyi56vLp8kNmd5f307GU1IxAR3RWowYrXVuM15KkRWUApe0EAaspYXVWmcil3Vmc1mCyGtOs7I00lrgDKzmQ3S2600ffPQmdmrh--DSScVkUWQ0AZBSbJeqgo8xGKvakN4Na0VBbSSqnUSVJKqtRLVOEN9BMYXd3IS_6n-ob0IddaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866413140</pqid></control><display><type>article</type><title>Viscous Approximations of Non-Convex Sweeping Processes in the Space of Regulated Functions</title><source>Springer Nature - Complete Springer Journals</source><creator>Krejčí, Pavel ; Monteiro, Giselle A. ; Recupero, Vincenzo</creator><creatorcontrib>Krejčí, Pavel ; Monteiro, Giselle A. ; Recupero, Vincenzo</creatorcontrib><description>Vanishing viscosity approximations are considered here for discontinuous sweeping processes with non-convex constraints. It is shown that they are well-posed for sufficiently small viscosity parameters, and that their solutions converge pointwise, as the viscosity parameter tends to zero, to the left-continuous solution to the sweeping process in the Kurzweil integral setting. The convergence is uniform if the input is continuous.</description><identifier>ISSN: 1877-0533</identifier><identifier>EISSN: 1877-0541</identifier><identifier>DOI: 10.1007/s11228-023-00695-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Approximation ; Convergence ; Mathematics ; Mathematics and Statistics ; Optimization ; Parameters ; Sweeping ; Viscosity</subject><ispartof>Set-valued and variational analysis, 2023-12, Vol.31 (4), Article 34</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-aa7921da5f43b874611038167e0ff16faaa4758d4f58b075d314bbe8ff0320fa3</cites><orcidid>0000-0001-9651-5719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11228-023-00695-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11228-023-00695-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Krejčí, Pavel</creatorcontrib><creatorcontrib>Monteiro, Giselle A.</creatorcontrib><creatorcontrib>Recupero, Vincenzo</creatorcontrib><title>Viscous Approximations of Non-Convex Sweeping Processes in the Space of Regulated Functions</title><title>Set-valued and variational analysis</title><addtitle>Set-Valued Var. Anal</addtitle><description>Vanishing viscosity approximations are considered here for discontinuous sweeping processes with non-convex constraints. It is shown that they are well-posed for sufficiently small viscosity parameters, and that their solutions converge pointwise, as the viscosity parameter tends to zero, to the left-continuous solution to the sweeping process in the Kurzweil integral setting. The convergence is uniform if the input is continuous.</description><subject>Analysis</subject><subject>Approximation</subject><subject>Convergence</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Sweeping</subject><subject>Viscosity</subject><issn>1877-0533</issn><issn>1877-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOdhK7Y1XxJVWAKLAwWE5il1TFDnYC7b_HbRFsTHfD-7ynexA6pXBOAcRFpJQxSYBxAlCMcrLeQwMqhSCQZ3T_d-f8EB3FuEgMwIgO0OtLEyvfRzxu2-BXzbvuGu8i9hbfeUcm3n2aFZ59GdM2bo4fgq9MjCbixuHuzeBZqyuzST-aeb_UnanxVe-qbckxOrB6Gc3Jzxyi56vLp8kNmd5f307GU1IxAR3RWowYrXVuM15KkRWUApe0EAaspYXVWmcil3Vmc1mCyGtOs7I00lrgDKzmQ3S2600ffPQmdmrh--DSScVkUWQ0AZBSbJeqgo8xGKvakN4Na0VBbSSqnUSVJKqtRLVOEN9BMYXd3IS_6n-ob0IddaA</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Krejčí, Pavel</creator><creator>Monteiro, Giselle A.</creator><creator>Recupero, Vincenzo</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9651-5719</orcidid></search><sort><creationdate>20231201</creationdate><title>Viscous Approximations of Non-Convex Sweeping Processes in the Space of Regulated Functions</title><author>Krejčí, Pavel ; Monteiro, Giselle A. ; Recupero, Vincenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-aa7921da5f43b874611038167e0ff16faaa4758d4f58b075d314bbe8ff0320fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Approximation</topic><topic>Convergence</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Sweeping</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krejčí, Pavel</creatorcontrib><creatorcontrib>Monteiro, Giselle A.</creatorcontrib><creatorcontrib>Recupero, Vincenzo</creatorcontrib><collection>CrossRef</collection><jtitle>Set-valued and variational analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krejčí, Pavel</au><au>Monteiro, Giselle A.</au><au>Recupero, Vincenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscous Approximations of Non-Convex Sweeping Processes in the Space of Regulated Functions</atitle><jtitle>Set-valued and variational analysis</jtitle><stitle>Set-Valued Var. Anal</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>31</volume><issue>4</issue><artnum>34</artnum><issn>1877-0533</issn><eissn>1877-0541</eissn><abstract>Vanishing viscosity approximations are considered here for discontinuous sweeping processes with non-convex constraints. It is shown that they are well-posed for sufficiently small viscosity parameters, and that their solutions converge pointwise, as the viscosity parameter tends to zero, to the left-continuous solution to the sweeping process in the Kurzweil integral setting. The convergence is uniform if the input is continuous.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11228-023-00695-y</doi><orcidid>https://orcid.org/0000-0001-9651-5719</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1877-0533
ispartof Set-valued and variational analysis, 2023-12, Vol.31 (4), Article 34
issn 1877-0533
1877-0541
language eng
recordid cdi_proquest_journals_2866413140
source Springer Nature - Complete Springer Journals
subjects Analysis
Approximation
Convergence
Mathematics
Mathematics and Statistics
Optimization
Parameters
Sweeping
Viscosity
title Viscous Approximations of Non-Convex Sweeping Processes in the Space of Regulated Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A34%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscous%20Approximations%20of%20Non-Convex%20Sweeping%20Processes%20in%20the%20Space%20of%20Regulated%20Functions&rft.jtitle=Set-valued%20and%20variational%20analysis&rft.au=Krej%C4%8D%C3%AD,%20Pavel&rft.date=2023-12-01&rft.volume=31&rft.issue=4&rft.artnum=34&rft.issn=1877-0533&rft.eissn=1877-0541&rft_id=info:doi/10.1007/s11228-023-00695-y&rft_dat=%3Cproquest_cross%3E2866413140%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866413140&rft_id=info:pmid/&rfr_iscdi=true