Exact solutions of (2 + 1)‐dimensional Schrödinger's hyperbolic equation using different techniques

In this paper, we derive new optical soliton solutions to (2 + 1)‐dimensional Schrödinger's hyperbolic equation using extended direct algebraic method and new extended hyperbolic function method. New acquired solutions have the form of bright, dark, combined dark‐bright, singular, and combined...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 2023-11, Vol.39 (6), p.4575-4594
Hauptverfasser: Rehman, Hamood Ur, Imran, Muhammad Asjad, Ullah, Naeem, Akgül, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4594
container_issue 6
container_start_page 4575
container_title Numerical methods for partial differential equations
container_volume 39
creator Rehman, Hamood Ur
Imran, Muhammad Asjad
Ullah, Naeem
Akgül, Ali
description In this paper, we derive new optical soliton solutions to (2 + 1)‐dimensional Schrödinger's hyperbolic equation using extended direct algebraic method and new extended hyperbolic function method. New acquired solutions have the form of bright, dark, combined dark‐bright, singular, and combined bright‐singular solitons solutions. These solutions reveal that our techniques are straightforward and dynamic. The solutions are also demonstrated through 3‐d and 2‐d plots to make clear the physical structures for such kind of model. The obtained results illustrate the power of the present method to determine soliton solution of nonlinear evolution equations.
doi_str_mv 10.1002/num.22644
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2866384146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866384146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-a9a1e57433f3993c4f503436c3cb13711d0344c6e2b161835a6297d2f1c323e33</originalsourceid><addsrcrecordid>eNotkE1OwzAQhS0EEqWw4AaWWECFUjwex4mXqCo_UiUWgMQuch2bpkrj1k4kuuMInIYLcBNOQgqsRjPz3rzRR8gpsDEwxq-abjXmXAqxRwbAVJ5wweU-GbBMqARS9XJIjmJcMgaQghoQN33TpqXR111b-SZS7-gFp5cURt_vH2W1sk3s57qmj2YRvj7Lqnm14TzSxXZtw9zXlaF20-mdmXax39Kycs4G27S0tWbRVJvOxmNy4HQd7cl_HZLnm-nT5C6ZPdzeT65nieFp1iZaabBpJhAdKoVGuJShQGnQzAEzgLJvhZGWz0FCjqmWXGUld2CQo0UckrO_u-vgd7ltsfRd6N-PBc-lxFyAkL1q9KcywccYrCvWoVrpsC2AFTuMRY-x-MWIPyc3Zlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866384146</pqid></control><display><type>article</type><title>Exact solutions of (2 + 1)‐dimensional Schrödinger's hyperbolic equation using different techniques</title><source>Wiley Journals</source><creator>Rehman, Hamood Ur ; Imran, Muhammad Asjad ; Ullah, Naeem ; Akgül, Ali</creator><creatorcontrib>Rehman, Hamood Ur ; Imran, Muhammad Asjad ; Ullah, Naeem ; Akgül, Ali</creatorcontrib><description>In this paper, we derive new optical soliton solutions to (2 + 1)‐dimensional Schrödinger's hyperbolic equation using extended direct algebraic method and new extended hyperbolic function method. New acquired solutions have the form of bright, dark, combined dark‐bright, singular, and combined bright‐singular solitons solutions. These solutions reveal that our techniques are straightforward and dynamic. The solutions are also demonstrated through 3‐d and 2‐d plots to make clear the physical structures for such kind of model. The obtained results illustrate the power of the present method to determine soliton solution of nonlinear evolution equations.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.22644</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc</publisher><subject>Exact solutions ; Hyperbolic functions ; Nonlinear evolution equations ; Solitary waves</subject><ispartof>Numerical methods for partial differential equations, 2023-11, Vol.39 (6), p.4575-4594</ispartof><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-a9a1e57433f3993c4f503436c3cb13711d0344c6e2b161835a6297d2f1c323e33</citedby><cites>FETCH-LOGICAL-c257t-a9a1e57433f3993c4f503436c3cb13711d0344c6e2b161835a6297d2f1c323e33</cites><orcidid>0000-0001-9832-1424 ; 0000-0002-1484-5114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rehman, Hamood Ur</creatorcontrib><creatorcontrib>Imran, Muhammad Asjad</creatorcontrib><creatorcontrib>Ullah, Naeem</creatorcontrib><creatorcontrib>Akgül, Ali</creatorcontrib><title>Exact solutions of (2 + 1)‐dimensional Schrödinger's hyperbolic equation using different techniques</title><title>Numerical methods for partial differential equations</title><description>In this paper, we derive new optical soliton solutions to (2 + 1)‐dimensional Schrödinger's hyperbolic equation using extended direct algebraic method and new extended hyperbolic function method. New acquired solutions have the form of bright, dark, combined dark‐bright, singular, and combined bright‐singular solitons solutions. These solutions reveal that our techniques are straightforward and dynamic. The solutions are also demonstrated through 3‐d and 2‐d plots to make clear the physical structures for such kind of model. The obtained results illustrate the power of the present method to determine soliton solution of nonlinear evolution equations.</description><subject>Exact solutions</subject><subject>Hyperbolic functions</subject><subject>Nonlinear evolution equations</subject><subject>Solitary waves</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkE1OwzAQhS0EEqWw4AaWWECFUjwex4mXqCo_UiUWgMQuch2bpkrj1k4kuuMInIYLcBNOQgqsRjPz3rzRR8gpsDEwxq-abjXmXAqxRwbAVJ5wweU-GbBMqARS9XJIjmJcMgaQghoQN33TpqXR111b-SZS7-gFp5cURt_vH2W1sk3s57qmj2YRvj7Lqnm14TzSxXZtw9zXlaF20-mdmXax39Kycs4G27S0tWbRVJvOxmNy4HQd7cl_HZLnm-nT5C6ZPdzeT65nieFp1iZaabBpJhAdKoVGuJShQGnQzAEzgLJvhZGWz0FCjqmWXGUld2CQo0UckrO_u-vgd7ltsfRd6N-PBc-lxFyAkL1q9KcywccYrCvWoVrpsC2AFTuMRY-x-MWIPyc3Zlg</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Rehman, Hamood Ur</creator><creator>Imran, Muhammad Asjad</creator><creator>Ullah, Naeem</creator><creator>Akgül, Ali</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9832-1424</orcidid><orcidid>https://orcid.org/0000-0002-1484-5114</orcidid></search><sort><creationdate>202311</creationdate><title>Exact solutions of (2 + 1)‐dimensional Schrödinger's hyperbolic equation using different techniques</title><author>Rehman, Hamood Ur ; Imran, Muhammad Asjad ; Ullah, Naeem ; Akgül, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-a9a1e57433f3993c4f503436c3cb13711d0344c6e2b161835a6297d2f1c323e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Exact solutions</topic><topic>Hyperbolic functions</topic><topic>Nonlinear evolution equations</topic><topic>Solitary waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rehman, Hamood Ur</creatorcontrib><creatorcontrib>Imran, Muhammad Asjad</creatorcontrib><creatorcontrib>Ullah, Naeem</creatorcontrib><creatorcontrib>Akgül, Ali</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rehman, Hamood Ur</au><au>Imran, Muhammad Asjad</au><au>Ullah, Naeem</au><au>Akgül, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact solutions of (2 + 1)‐dimensional Schrödinger's hyperbolic equation using different techniques</atitle><jtitle>Numerical methods for partial differential equations</jtitle><date>2023-11</date><risdate>2023</risdate><volume>39</volume><issue>6</issue><spage>4575</spage><epage>4594</epage><pages>4575-4594</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>In this paper, we derive new optical soliton solutions to (2 + 1)‐dimensional Schrödinger's hyperbolic equation using extended direct algebraic method and new extended hyperbolic function method. New acquired solutions have the form of bright, dark, combined dark‐bright, singular, and combined bright‐singular solitons solutions. These solutions reveal that our techniques are straightforward and dynamic. The solutions are also demonstrated through 3‐d and 2‐d plots to make clear the physical structures for such kind of model. The obtained results illustrate the power of the present method to determine soliton solution of nonlinear evolution equations.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/num.22644</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-9832-1424</orcidid><orcidid>https://orcid.org/0000-0002-1484-5114</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0749-159X
ispartof Numerical methods for partial differential equations, 2023-11, Vol.39 (6), p.4575-4594
issn 0749-159X
1098-2426
language eng
recordid cdi_proquest_journals_2866384146
source Wiley Journals
subjects Exact solutions
Hyperbolic functions
Nonlinear evolution equations
Solitary waves
title Exact solutions of (2 + 1)‐dimensional Schrödinger's hyperbolic equation using different techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A23%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20solutions%20of%20(2%20+%201)%E2%80%90dimensional%20Schr%C3%B6dinger's%20hyperbolic%20equation%20using%20different%20techniques&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Rehman,%20Hamood%20Ur&rft.date=2023-11&rft.volume=39&rft.issue=6&rft.spage=4575&rft.epage=4594&rft.pages=4575-4594&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.22644&rft_dat=%3Cproquest_cross%3E2866384146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866384146&rft_id=info:pmid/&rfr_iscdi=true