Exact solutions of (2 + 1)‐dimensional Schrödinger's hyperbolic equation using different techniques
In this paper, we derive new optical soliton solutions to (2 + 1)‐dimensional Schrödinger's hyperbolic equation using extended direct algebraic method and new extended hyperbolic function method. New acquired solutions have the form of bright, dark, combined dark‐bright, singular, and combined...
Gespeichert in:
Veröffentlicht in: | Numerical methods for partial differential equations 2023-11, Vol.39 (6), p.4575-4594 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4594 |
---|---|
container_issue | 6 |
container_start_page | 4575 |
container_title | Numerical methods for partial differential equations |
container_volume | 39 |
creator | Rehman, Hamood Ur Imran, Muhammad Asjad Ullah, Naeem Akgül, Ali |
description | In this paper, we derive new optical soliton solutions to (2 + 1)‐dimensional Schrödinger's hyperbolic equation using extended direct algebraic method and new extended hyperbolic function method. New acquired solutions have the form of bright, dark, combined dark‐bright, singular, and combined bright‐singular solitons solutions. These solutions reveal that our techniques are straightforward and dynamic. The solutions are also demonstrated through 3‐d and 2‐d plots to make clear the physical structures for such kind of model. The obtained results illustrate the power of the present method to determine soliton solution of nonlinear evolution equations. |
doi_str_mv | 10.1002/num.22644 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2866384146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866384146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-a9a1e57433f3993c4f503436c3cb13711d0344c6e2b161835a6297d2f1c323e33</originalsourceid><addsrcrecordid>eNotkE1OwzAQhS0EEqWw4AaWWECFUjwex4mXqCo_UiUWgMQuch2bpkrj1k4kuuMInIYLcBNOQgqsRjPz3rzRR8gpsDEwxq-abjXmXAqxRwbAVJ5wweU-GbBMqARS9XJIjmJcMgaQghoQN33TpqXR111b-SZS7-gFp5cURt_vH2W1sk3s57qmj2YRvj7Lqnm14TzSxXZtw9zXlaF20-mdmXax39Kycs4G27S0tWbRVJvOxmNy4HQd7cl_HZLnm-nT5C6ZPdzeT65nieFp1iZaabBpJhAdKoVGuJShQGnQzAEzgLJvhZGWz0FCjqmWXGUld2CQo0UckrO_u-vgd7ltsfRd6N-PBc-lxFyAkL1q9KcywccYrCvWoVrpsC2AFTuMRY-x-MWIPyc3Zlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866384146</pqid></control><display><type>article</type><title>Exact solutions of (2 + 1)‐dimensional Schrödinger's hyperbolic equation using different techniques</title><source>Wiley Journals</source><creator>Rehman, Hamood Ur ; Imran, Muhammad Asjad ; Ullah, Naeem ; Akgül, Ali</creator><creatorcontrib>Rehman, Hamood Ur ; Imran, Muhammad Asjad ; Ullah, Naeem ; Akgül, Ali</creatorcontrib><description>In this paper, we derive new optical soliton solutions to (2 + 1)‐dimensional Schrödinger's hyperbolic equation using extended direct algebraic method and new extended hyperbolic function method. New acquired solutions have the form of bright, dark, combined dark‐bright, singular, and combined bright‐singular solitons solutions. These solutions reveal that our techniques are straightforward and dynamic. The solutions are also demonstrated through 3‐d and 2‐d plots to make clear the physical structures for such kind of model. The obtained results illustrate the power of the present method to determine soliton solution of nonlinear evolution equations.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.22644</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc</publisher><subject>Exact solutions ; Hyperbolic functions ; Nonlinear evolution equations ; Solitary waves</subject><ispartof>Numerical methods for partial differential equations, 2023-11, Vol.39 (6), p.4575-4594</ispartof><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-a9a1e57433f3993c4f503436c3cb13711d0344c6e2b161835a6297d2f1c323e33</citedby><cites>FETCH-LOGICAL-c257t-a9a1e57433f3993c4f503436c3cb13711d0344c6e2b161835a6297d2f1c323e33</cites><orcidid>0000-0001-9832-1424 ; 0000-0002-1484-5114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rehman, Hamood Ur</creatorcontrib><creatorcontrib>Imran, Muhammad Asjad</creatorcontrib><creatorcontrib>Ullah, Naeem</creatorcontrib><creatorcontrib>Akgül, Ali</creatorcontrib><title>Exact solutions of (2 + 1)‐dimensional Schrödinger's hyperbolic equation using different techniques</title><title>Numerical methods for partial differential equations</title><description>In this paper, we derive new optical soliton solutions to (2 + 1)‐dimensional Schrödinger's hyperbolic equation using extended direct algebraic method and new extended hyperbolic function method. New acquired solutions have the form of bright, dark, combined dark‐bright, singular, and combined bright‐singular solitons solutions. These solutions reveal that our techniques are straightforward and dynamic. The solutions are also demonstrated through 3‐d and 2‐d plots to make clear the physical structures for such kind of model. The obtained results illustrate the power of the present method to determine soliton solution of nonlinear evolution equations.</description><subject>Exact solutions</subject><subject>Hyperbolic functions</subject><subject>Nonlinear evolution equations</subject><subject>Solitary waves</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkE1OwzAQhS0EEqWw4AaWWECFUjwex4mXqCo_UiUWgMQuch2bpkrj1k4kuuMInIYLcBNOQgqsRjPz3rzRR8gpsDEwxq-abjXmXAqxRwbAVJ5wweU-GbBMqARS9XJIjmJcMgaQghoQN33TpqXR111b-SZS7-gFp5cURt_vH2W1sk3s57qmj2YRvj7Lqnm14TzSxXZtw9zXlaF20-mdmXax39Kycs4G27S0tWbRVJvOxmNy4HQd7cl_HZLnm-nT5C6ZPdzeT65nieFp1iZaabBpJhAdKoVGuJShQGnQzAEzgLJvhZGWz0FCjqmWXGUld2CQo0UckrO_u-vgd7ltsfRd6N-PBc-lxFyAkL1q9KcywccYrCvWoVrpsC2AFTuMRY-x-MWIPyc3Zlg</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Rehman, Hamood Ur</creator><creator>Imran, Muhammad Asjad</creator><creator>Ullah, Naeem</creator><creator>Akgül, Ali</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9832-1424</orcidid><orcidid>https://orcid.org/0000-0002-1484-5114</orcidid></search><sort><creationdate>202311</creationdate><title>Exact solutions of (2 + 1)‐dimensional Schrödinger's hyperbolic equation using different techniques</title><author>Rehman, Hamood Ur ; Imran, Muhammad Asjad ; Ullah, Naeem ; Akgül, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-a9a1e57433f3993c4f503436c3cb13711d0344c6e2b161835a6297d2f1c323e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Exact solutions</topic><topic>Hyperbolic functions</topic><topic>Nonlinear evolution equations</topic><topic>Solitary waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rehman, Hamood Ur</creatorcontrib><creatorcontrib>Imran, Muhammad Asjad</creatorcontrib><creatorcontrib>Ullah, Naeem</creatorcontrib><creatorcontrib>Akgül, Ali</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rehman, Hamood Ur</au><au>Imran, Muhammad Asjad</au><au>Ullah, Naeem</au><au>Akgül, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact solutions of (2 + 1)‐dimensional Schrödinger's hyperbolic equation using different techniques</atitle><jtitle>Numerical methods for partial differential equations</jtitle><date>2023-11</date><risdate>2023</risdate><volume>39</volume><issue>6</issue><spage>4575</spage><epage>4594</epage><pages>4575-4594</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>In this paper, we derive new optical soliton solutions to (2 + 1)‐dimensional Schrödinger's hyperbolic equation using extended direct algebraic method and new extended hyperbolic function method. New acquired solutions have the form of bright, dark, combined dark‐bright, singular, and combined bright‐singular solitons solutions. These solutions reveal that our techniques are straightforward and dynamic. The solutions are also demonstrated through 3‐d and 2‐d plots to make clear the physical structures for such kind of model. The obtained results illustrate the power of the present method to determine soliton solution of nonlinear evolution equations.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/num.22644</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-9832-1424</orcidid><orcidid>https://orcid.org/0000-0002-1484-5114</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-159X |
ispartof | Numerical methods for partial differential equations, 2023-11, Vol.39 (6), p.4575-4594 |
issn | 0749-159X 1098-2426 |
language | eng |
recordid | cdi_proquest_journals_2866384146 |
source | Wiley Journals |
subjects | Exact solutions Hyperbolic functions Nonlinear evolution equations Solitary waves |
title | Exact solutions of (2 + 1)‐dimensional Schrödinger's hyperbolic equation using different techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A23%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20solutions%20of%20(2%20+%201)%E2%80%90dimensional%20Schr%C3%B6dinger's%20hyperbolic%20equation%20using%20different%20techniques&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Rehman,%20Hamood%20Ur&rft.date=2023-11&rft.volume=39&rft.issue=6&rft.spage=4575&rft.epage=4594&rft.pages=4575-4594&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.22644&rft_dat=%3Cproquest_cross%3E2866384146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866384146&rft_id=info:pmid/&rfr_iscdi=true |