Probing the Viscoelastic Properties of Aqueous Protein Solutions using Molecular Dynamics Simulations

We performed molecular dynamics simulations to investigate the viscoelastic properties of aqueous protein solutions containing an antifreeze protein, a toxin protein, and bovine serum albumin. These simulations covered a temperature range from 280 K to 340 K. Our findings demonstrate that lower temp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-09
Hauptverfasser: Hanlon, Dillon F, Saika-Voivod, Ivan, M Shajahan G Razul, Andrews, G Todd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hanlon, Dillon F
Saika-Voivod, Ivan
M Shajahan G Razul
Andrews, G Todd
description We performed molecular dynamics simulations to investigate the viscoelastic properties of aqueous protein solutions containing an antifreeze protein, a toxin protein, and bovine serum albumin. These simulations covered a temperature range from 280 K to 340 K. Our findings demonstrate that lower temperatures are associated with higher viscosity as well as a lower bulk modulus and speed of sound for all the systems studied. Furthermore, we observe an increase in the bulk modulus and speed of sound as the temperature increases up to a weak maximum while the viscosity decreases. Moreover, we analyzed the influence of protein concentration on the viscoelastic properties of the antifreeze protein solution. We observed a consistent increase in the bulk modulus, speed of sound, and viscosity as the protein concentration increased. Remarkably, our molecular dynamics simulations results closely resemble the trends observed in Brillouin scattering experiments on aqueous protein solutions. The similarity thus validates the use of simulations in studying the viscoelastic properties of protein water solutions. Ultimately, this work provides motivation for the integration of computer simulations with experimental data and holds potential for advancing our understanding of both simple and complex systems.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2866254996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866254996</sourcerecordid><originalsourceid>FETCH-proquest_journals_28662549963</originalsourceid><addsrcrecordid>eNqNjM0KwjAQhIMgWLTvsOBZqEkb9Sj-4EUQFK-llq1GYrZmk4NvbxUfwNPAN99MTyRSqelknks5ECnzPcsyqWeyKFQi8ODpYtwVwg3hbLgmtBUHU0NXtOiDQQZqYPmMSJE_NKBxcCQbgyHHEPkz35PFOtrKw_rlqoepGY7m0YGvNBL9prKM6S-HYrzdnFa7SeupO-ZQ3il611WlnGsti3yx0Oo_6w32UUfn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866254996</pqid></control><display><type>article</type><title>Probing the Viscoelastic Properties of Aqueous Protein Solutions using Molecular Dynamics Simulations</title><source>Free E- Journals</source><creator>Hanlon, Dillon F ; Saika-Voivod, Ivan ; M Shajahan G Razul ; Andrews, G Todd</creator><creatorcontrib>Hanlon, Dillon F ; Saika-Voivod, Ivan ; M Shajahan G Razul ; Andrews, G Todd</creatorcontrib><description>We performed molecular dynamics simulations to investigate the viscoelastic properties of aqueous protein solutions containing an antifreeze protein, a toxin protein, and bovine serum albumin. These simulations covered a temperature range from 280 K to 340 K. Our findings demonstrate that lower temperatures are associated with higher viscosity as well as a lower bulk modulus and speed of sound for all the systems studied. Furthermore, we observe an increase in the bulk modulus and speed of sound as the temperature increases up to a weak maximum while the viscosity decreases. Moreover, we analyzed the influence of protein concentration on the viscoelastic properties of the antifreeze protein solution. We observed a consistent increase in the bulk modulus, speed of sound, and viscosity as the protein concentration increased. Remarkably, our molecular dynamics simulations results closely resemble the trends observed in Brillouin scattering experiments on aqueous protein solutions. The similarity thus validates the use of simulations in studying the viscoelastic properties of protein water solutions. Ultimately, this work provides motivation for the integration of computer simulations with experimental data and holds potential for advancing our understanding of both simple and complex systems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Antifreezes ; Bulk modulus ; Complex systems ; Molecular dynamics ; Proteins ; Serum albumin ; Simulation ; Viscoelasticity ; Viscosity</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Hanlon, Dillon F</creatorcontrib><creatorcontrib>Saika-Voivod, Ivan</creatorcontrib><creatorcontrib>M Shajahan G Razul</creatorcontrib><creatorcontrib>Andrews, G Todd</creatorcontrib><title>Probing the Viscoelastic Properties of Aqueous Protein Solutions using Molecular Dynamics Simulations</title><title>arXiv.org</title><description>We performed molecular dynamics simulations to investigate the viscoelastic properties of aqueous protein solutions containing an antifreeze protein, a toxin protein, and bovine serum albumin. These simulations covered a temperature range from 280 K to 340 K. Our findings demonstrate that lower temperatures are associated with higher viscosity as well as a lower bulk modulus and speed of sound for all the systems studied. Furthermore, we observe an increase in the bulk modulus and speed of sound as the temperature increases up to a weak maximum while the viscosity decreases. Moreover, we analyzed the influence of protein concentration on the viscoelastic properties of the antifreeze protein solution. We observed a consistent increase in the bulk modulus, speed of sound, and viscosity as the protein concentration increased. Remarkably, our molecular dynamics simulations results closely resemble the trends observed in Brillouin scattering experiments on aqueous protein solutions. The similarity thus validates the use of simulations in studying the viscoelastic properties of protein water solutions. Ultimately, this work provides motivation for the integration of computer simulations with experimental data and holds potential for advancing our understanding of both simple and complex systems.</description><subject>Antifreezes</subject><subject>Bulk modulus</subject><subject>Complex systems</subject><subject>Molecular dynamics</subject><subject>Proteins</subject><subject>Serum albumin</subject><subject>Simulation</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjM0KwjAQhIMgWLTvsOBZqEkb9Sj-4EUQFK-llq1GYrZmk4NvbxUfwNPAN99MTyRSqelknks5ECnzPcsyqWeyKFQi8ODpYtwVwg3hbLgmtBUHU0NXtOiDQQZqYPmMSJE_NKBxcCQbgyHHEPkz35PFOtrKw_rlqoepGY7m0YGvNBL9prKM6S-HYrzdnFa7SeupO-ZQ3il611WlnGsti3yx0Oo_6w32UUfn</recordid><startdate>20230917</startdate><enddate>20230917</enddate><creator>Hanlon, Dillon F</creator><creator>Saika-Voivod, Ivan</creator><creator>M Shajahan G Razul</creator><creator>Andrews, G Todd</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230917</creationdate><title>Probing the Viscoelastic Properties of Aqueous Protein Solutions using Molecular Dynamics Simulations</title><author>Hanlon, Dillon F ; Saika-Voivod, Ivan ; M Shajahan G Razul ; Andrews, G Todd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28662549963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antifreezes</topic><topic>Bulk modulus</topic><topic>Complex systems</topic><topic>Molecular dynamics</topic><topic>Proteins</topic><topic>Serum albumin</topic><topic>Simulation</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>online_resources</toplevel><creatorcontrib>Hanlon, Dillon F</creatorcontrib><creatorcontrib>Saika-Voivod, Ivan</creatorcontrib><creatorcontrib>M Shajahan G Razul</creatorcontrib><creatorcontrib>Andrews, G Todd</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanlon, Dillon F</au><au>Saika-Voivod, Ivan</au><au>M Shajahan G Razul</au><au>Andrews, G Todd</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Probing the Viscoelastic Properties of Aqueous Protein Solutions using Molecular Dynamics Simulations</atitle><jtitle>arXiv.org</jtitle><date>2023-09-17</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We performed molecular dynamics simulations to investigate the viscoelastic properties of aqueous protein solutions containing an antifreeze protein, a toxin protein, and bovine serum albumin. These simulations covered a temperature range from 280 K to 340 K. Our findings demonstrate that lower temperatures are associated with higher viscosity as well as a lower bulk modulus and speed of sound for all the systems studied. Furthermore, we observe an increase in the bulk modulus and speed of sound as the temperature increases up to a weak maximum while the viscosity decreases. Moreover, we analyzed the influence of protein concentration on the viscoelastic properties of the antifreeze protein solution. We observed a consistent increase in the bulk modulus, speed of sound, and viscosity as the protein concentration increased. Remarkably, our molecular dynamics simulations results closely resemble the trends observed in Brillouin scattering experiments on aqueous protein solutions. The similarity thus validates the use of simulations in studying the viscoelastic properties of protein water solutions. Ultimately, this work provides motivation for the integration of computer simulations with experimental data and holds potential for advancing our understanding of both simple and complex systems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2866254996
source Free E- Journals
subjects Antifreezes
Bulk modulus
Complex systems
Molecular dynamics
Proteins
Serum albumin
Simulation
Viscoelasticity
Viscosity
title Probing the Viscoelastic Properties of Aqueous Protein Solutions using Molecular Dynamics Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A29%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Probing%20the%20Viscoelastic%20Properties%20of%20Aqueous%20Protein%20Solutions%20using%20Molecular%20Dynamics%20Simulations&rft.jtitle=arXiv.org&rft.au=Hanlon,%20Dillon%20F&rft.date=2023-09-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2866254996%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866254996&rft_id=info:pmid/&rfr_iscdi=true