Geometry of Banach algebra \(\mA\) and the bidual of \(L^1(G,\mA)\)
This article is intended towards the study of the bidual of generalized group algebra \(L^1(G,\mA)\) equipped with two Arens product, where \(G\) is any locally compact group and \(\mA\) is a Banach algebra. We show that the left topological center of \((L^1(G)\hat\otimes\mA)^{**}\) is a Banach \(L^...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-09 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Singh, Lav Kumar |
description | This article is intended towards the study of the bidual of generalized group algebra \(L^1(G,\mA)\) equipped with two Arens product, where \(G\) is any locally compact group and \(\mA\) is a Banach algebra. We show that the left topological center of \((L^1(G)\hat\otimes\mA)^{**}\) is a Banach \(L^1(G)\)-module if \(G\) is abelian. Further it also holds permanance property with respect to the unitization of \(\mA\). We then use this fact to extend the remarkable result of A.M Lau and V. Losert\cite{Lau-losert}, about the topological center of \(L^1(G)^{**}\) being just \(L^1(G)\), to the reflexive Banach algebra valued case using the theory of vector measures. We further explore pseudo-center of \(L^1(G,\mA)\) for non-reflexive Banach algebras \(\mA\) and give a partial characterization for elements of pseudo-center using the Cohen's factorization theorem. In the running we also observe few consequences when \(\mA\) holds the Radon-Nikodym property and weak sequential completeness. |
doi_str_mv | 10.48550/arxiv.2309.09525 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2866249795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866249795</sourcerecordid><originalsourceid>FETCH-proquest_journals_28662497953</originalsourceid><addsrcrecordid>eNqNyrsOgjAYQOHGxESiPIBbExdIFMtfymVU4mVwdGwkRYpAuGgBo28vJj6A0xm-g9DcJpbjM0bWQr3ypwWUBBYJGLAR0oBSe-U7ABOkt21BCAHXA8aohsKDbCrZqTduUrwVtbhmWJQ3GSuBucGrDTexqBPcZRLHedKL8jty43SxjcNycJObMzRORdlK_dcpWux35_C4uqvm0cu2i4qmV_VAEfiuC07gBYz-d30AfCQ9PQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866249795</pqid></control><display><type>article</type><title>Geometry of Banach algebra \(\mA\) and the bidual of \(L^1(G,\mA)\)</title><source>Free E- Journals</source><creator>Singh, Lav Kumar</creator><creatorcontrib>Singh, Lav Kumar</creatorcontrib><description>This article is intended towards the study of the bidual of generalized group algebra \(L^1(G,\mA)\) equipped with two Arens product, where \(G\) is any locally compact group and \(\mA\) is a Banach algebra. We show that the left topological center of \((L^1(G)\hat\otimes\mA)^{**}\) is a Banach \(L^1(G)\)-module if \(G\) is abelian. Further it also holds permanance property with respect to the unitization of \(\mA\). We then use this fact to extend the remarkable result of A.M Lau and V. Losert\cite{Lau-losert}, about the topological center of \(L^1(G)^{**}\) being just \(L^1(G)\), to the reflexive Banach algebra valued case using the theory of vector measures. We further explore pseudo-center of \(L^1(G,\mA)\) for non-reflexive Banach algebras \(\mA\) and give a partial characterization for elements of pseudo-center using the Cohen's factorization theorem. In the running we also observe few consequences when \(\mA\) holds the Radon-Nikodym property and weak sequential completeness.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2309.09525</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Banach spaces ; Topology</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27902</link.rule.ids></links><search><creatorcontrib>Singh, Lav Kumar</creatorcontrib><title>Geometry of Banach algebra \(\mA\) and the bidual of \(L^1(G,\mA)\)</title><title>arXiv.org</title><description>This article is intended towards the study of the bidual of generalized group algebra \(L^1(G,\mA)\) equipped with two Arens product, where \(G\) is any locally compact group and \(\mA\) is a Banach algebra. We show that the left topological center of \((L^1(G)\hat\otimes\mA)^{**}\) is a Banach \(L^1(G)\)-module if \(G\) is abelian. Further it also holds permanance property with respect to the unitization of \(\mA\). We then use this fact to extend the remarkable result of A.M Lau and V. Losert\cite{Lau-losert}, about the topological center of \(L^1(G)^{**}\) being just \(L^1(G)\), to the reflexive Banach algebra valued case using the theory of vector measures. We further explore pseudo-center of \(L^1(G,\mA)\) for non-reflexive Banach algebras \(\mA\) and give a partial characterization for elements of pseudo-center using the Cohen's factorization theorem. In the running we also observe few consequences when \(\mA\) holds the Radon-Nikodym property and weak sequential completeness.</description><subject>Algebra</subject><subject>Banach spaces</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrsOgjAYQOHGxESiPIBbExdIFMtfymVU4mVwdGwkRYpAuGgBo28vJj6A0xm-g9DcJpbjM0bWQr3ypwWUBBYJGLAR0oBSe-U7ABOkt21BCAHXA8aohsKDbCrZqTduUrwVtbhmWJQ3GSuBucGrDTexqBPcZRLHedKL8jty43SxjcNycJObMzRORdlK_dcpWux35_C4uqvm0cu2i4qmV_VAEfiuC07gBYz-d30AfCQ9PQ</recordid><startdate>20230918</startdate><enddate>20230918</enddate><creator>Singh, Lav Kumar</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230918</creationdate><title>Geometry of Banach algebra \(\mA\) and the bidual of \(L^1(G,\mA)\)</title><author>Singh, Lav Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28662497953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Banach spaces</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Singh, Lav Kumar</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Lav Kumar</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Geometry of Banach algebra \(\mA\) and the bidual of \(L^1(G,\mA)\)</atitle><jtitle>arXiv.org</jtitle><date>2023-09-18</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This article is intended towards the study of the bidual of generalized group algebra \(L^1(G,\mA)\) equipped with two Arens product, where \(G\) is any locally compact group and \(\mA\) is a Banach algebra. We show that the left topological center of \((L^1(G)\hat\otimes\mA)^{**}\) is a Banach \(L^1(G)\)-module if \(G\) is abelian. Further it also holds permanance property with respect to the unitization of \(\mA\). We then use this fact to extend the remarkable result of A.M Lau and V. Losert\cite{Lau-losert}, about the topological center of \(L^1(G)^{**}\) being just \(L^1(G)\), to the reflexive Banach algebra valued case using the theory of vector measures. We further explore pseudo-center of \(L^1(G,\mA)\) for non-reflexive Banach algebras \(\mA\) and give a partial characterization for elements of pseudo-center using the Cohen's factorization theorem. In the running we also observe few consequences when \(\mA\) holds the Radon-Nikodym property and weak sequential completeness.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2309.09525</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2866249795 |
source | Free E- Journals |
subjects | Algebra Banach spaces Topology |
title | Geometry of Banach algebra \(\mA\) and the bidual of \(L^1(G,\mA)\) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Geometry%20of%20Banach%20algebra%20%5C(%5CmA%5C)%20and%20the%20bidual%20of%20%5C(L%5E1(G,%5CmA)%5C)&rft.jtitle=arXiv.org&rft.au=Singh,%20Lav%20Kumar&rft.date=2023-09-18&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2309.09525&rft_dat=%3Cproquest%3E2866249795%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866249795&rft_id=info:pmid/&rfr_iscdi=true |