Chromium(III)-substituted hydroxyapatite/silica sol–gel coating: towards novel green coating for corrosion protection of AA2024

A novel Cr-substituted hydroxyapatite (Cr-HA) nanoparticles were synthesized via continuous hydrothermal technique. Moreover, the synthesized material was embedded into a silica sol–gel matrix and applied on an AA2024 substrate to evaluate the corrosion inhibition efficiency of the coating. TEM and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sol-gel science and technology 2023-10, Vol.108 (1), p.200-217
Hauptverfasser: Elbasuney, Sherif, Naeem, Ibrahim, Mokhtar, Mohamed, Sheashea, Mohamed, Zorainy, Mahmoud, El-Sayyad, Gharieb S., Gobara, Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 217
container_issue 1
container_start_page 200
container_title Journal of sol-gel science and technology
container_volume 108
creator Elbasuney, Sherif
Naeem, Ibrahim
Mokhtar, Mohamed
Sheashea, Mohamed
Zorainy, Mahmoud
El-Sayyad, Gharieb S.
Gobara, Mohamed
description A novel Cr-substituted hydroxyapatite (Cr-HA) nanoparticles were synthesized via continuous hydrothermal technique. Moreover, the synthesized material was embedded into a silica sol–gel matrix and applied on an AA2024 substrate to evaluate the corrosion inhibition efficiency of the coating. TEM and SEM micrographs confirmed the development of Cr-HA nanorods of 20 nm width and 6 µm length. XRD diffractograms demonstrated the evolution of a new crystalline structure; the XRD pattern was analyzed by Material Studio software which confirms the replacement of Ca 2+ by Cr 3+ . The EDX mapping revealed a uniform distribution of Ca and Cr ions within the Cr-HA crystal structure. The atomic ratio of Ca 2+ : Cr 3+ was reported to be 4:1 respectively. The Cr-HA nanoparticles were uniformly distributed in a silica sol–gel matrix and applied on an AA2024 substrate. The corrosion performance of the Cr-HA sol–gel coating composite was evaluated using Electrochemical Impedance Spectroscopy (EIS) in an aerated 3.5% NaCl solution and the results compared to those of neat silica sol–gel coating. Whereas pitting corrosion was also observed in the case of a neat sol–gel coated sample within 5 days of immersion, Cr-HA sol–gel coated AA2024 exhibited prolonged pitting resistance over 110 days with no sign of corrosion or delamination. The EIS data fitting suggested the formation of a protective layer that is responsible for the extended corrosion resistance of the Cr-HA-coated sample. The scratch test indicated that the Cr-HA nanocomposite coating might offer short-term self-healing properties in the 3.5% NaCl corrosive media. Graphical Abstract
doi_str_mv 10.1007/s10971-023-06187-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2866247536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866247536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-5f395b70fd682230c6b078b097f11d785342151e39a81ae5fcc7f6bb1f8476043</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcIrEBQ6mazuxXW5VxSNSJS5wtvKw01RpXOwE6A2-gT_kS3AJiBunHe3u7MwOQqcELgmAmHgCU0EwUIaBEymw2EMjkgiGYxnzfTSCKZUYBIhDdOT9CgCSmIgRep8vnV3X_fo8TdML7Pvcd3XXd7qMltvS2ddttslCR0983dRFFnnbfL59VLqJChsGbXUVdfYlc6WPWvsc2pXTuv0dRsa6gJ2zvrZttHG200W3g9ZEsxkFGh-jA5M1Xp_81DF6vLl-mN_hxf1tOp8tcME463Bi2DTJBZiSS0oZFDwHIfPwtiGkFDJhMSUJ0WyaSZLpxBSFMDzPiZGx4BCzMTob7gYTT732nVrZ3rVBUlHJOY1FEoTGiA5bRbDsnTZq4-p15raKgNpFrYaoVYhafUetRCCxgeTDcltp93f6H9YXdBGDTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866247536</pqid></control><display><type>article</type><title>Chromium(III)-substituted hydroxyapatite/silica sol–gel coating: towards novel green coating for corrosion protection of AA2024</title><source>SpringerLink Journals - AutoHoldings</source><creator>Elbasuney, Sherif ; Naeem, Ibrahim ; Mokhtar, Mohamed ; Sheashea, Mohamed ; Zorainy, Mahmoud ; El-Sayyad, Gharieb S. ; Gobara, Mohamed</creator><creatorcontrib>Elbasuney, Sherif ; Naeem, Ibrahim ; Mokhtar, Mohamed ; Sheashea, Mohamed ; Zorainy, Mahmoud ; El-Sayyad, Gharieb S. ; Gobara, Mohamed</creatorcontrib><description>A novel Cr-substituted hydroxyapatite (Cr-HA) nanoparticles were synthesized via continuous hydrothermal technique. Moreover, the synthesized material was embedded into a silica sol–gel matrix and applied on an AA2024 substrate to evaluate the corrosion inhibition efficiency of the coating. TEM and SEM micrographs confirmed the development of Cr-HA nanorods of 20 nm width and 6 µm length. XRD diffractograms demonstrated the evolution of a new crystalline structure; the XRD pattern was analyzed by Material Studio software which confirms the replacement of Ca 2+ by Cr 3+ . The EDX mapping revealed a uniform distribution of Ca and Cr ions within the Cr-HA crystal structure. The atomic ratio of Ca 2+ : Cr 3+ was reported to be 4:1 respectively. The Cr-HA nanoparticles were uniformly distributed in a silica sol–gel matrix and applied on an AA2024 substrate. The corrosion performance of the Cr-HA sol–gel coating composite was evaluated using Electrochemical Impedance Spectroscopy (EIS) in an aerated 3.5% NaCl solution and the results compared to those of neat silica sol–gel coating. Whereas pitting corrosion was also observed in the case of a neat sol–gel coated sample within 5 days of immersion, Cr-HA sol–gel coated AA2024 exhibited prolonged pitting resistance over 110 days with no sign of corrosion or delamination. The EIS data fitting suggested the formation of a protective layer that is responsible for the extended corrosion resistance of the Cr-HA-coated sample. The scratch test indicated that the Cr-HA nanocomposite coating might offer short-term self-healing properties in the 3.5% NaCl corrosive media. Graphical Abstract</description><identifier>ISSN: 0928-0707</identifier><identifier>EISSN: 1573-4846</identifier><identifier>DOI: 10.1007/s10971-023-06187-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aeration ; Aluminum base alloys ; Atomic structure ; Calcium ions ; Ceramics ; Chemistry and Materials Science ; Composites ; Corrosion ; Corrosion prevention ; Corrosion resistance ; Crystal structure ; Electrochemical impedance spectroscopy ; Glass ; Hydroxyapatite ; Inorganic Chemistry ; Materials Science ; Nanocomposites ; Nanoparticles ; Nanorods ; Nanotechnology ; Natural Materials ; Optical and Electronic Materials ; Original Paper: Sol-gel and hybrid materials with surface modification for applications ; Pattern analysis ; Photomicrographs ; Pitting (corrosion) ; Protective coatings ; Scratch tests ; Silica gel ; Silicon dioxide ; Sol-gel processes ; Substitutes ; Substrate inhibition ; Synthesis ; Trivalent chromium ; X-ray diffraction</subject><ispartof>Journal of sol-gel science and technology, 2023-10, Vol.108 (1), p.200-217</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-5f395b70fd682230c6b078b097f11d785342151e39a81ae5fcc7f6bb1f8476043</citedby><cites>FETCH-LOGICAL-c363t-5f395b70fd682230c6b078b097f11d785342151e39a81ae5fcc7f6bb1f8476043</cites><orcidid>0000-0001-5410-7936</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10971-023-06187-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10971-023-06187-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Elbasuney, Sherif</creatorcontrib><creatorcontrib>Naeem, Ibrahim</creatorcontrib><creatorcontrib>Mokhtar, Mohamed</creatorcontrib><creatorcontrib>Sheashea, Mohamed</creatorcontrib><creatorcontrib>Zorainy, Mahmoud</creatorcontrib><creatorcontrib>El-Sayyad, Gharieb S.</creatorcontrib><creatorcontrib>Gobara, Mohamed</creatorcontrib><title>Chromium(III)-substituted hydroxyapatite/silica sol–gel coating: towards novel green coating for corrosion protection of AA2024</title><title>Journal of sol-gel science and technology</title><addtitle>J Sol-Gel Sci Technol</addtitle><description>A novel Cr-substituted hydroxyapatite (Cr-HA) nanoparticles were synthesized via continuous hydrothermal technique. Moreover, the synthesized material was embedded into a silica sol–gel matrix and applied on an AA2024 substrate to evaluate the corrosion inhibition efficiency of the coating. TEM and SEM micrographs confirmed the development of Cr-HA nanorods of 20 nm width and 6 µm length. XRD diffractograms demonstrated the evolution of a new crystalline structure; the XRD pattern was analyzed by Material Studio software which confirms the replacement of Ca 2+ by Cr 3+ . The EDX mapping revealed a uniform distribution of Ca and Cr ions within the Cr-HA crystal structure. The atomic ratio of Ca 2+ : Cr 3+ was reported to be 4:1 respectively. The Cr-HA nanoparticles were uniformly distributed in a silica sol–gel matrix and applied on an AA2024 substrate. The corrosion performance of the Cr-HA sol–gel coating composite was evaluated using Electrochemical Impedance Spectroscopy (EIS) in an aerated 3.5% NaCl solution and the results compared to those of neat silica sol–gel coating. Whereas pitting corrosion was also observed in the case of a neat sol–gel coated sample within 5 days of immersion, Cr-HA sol–gel coated AA2024 exhibited prolonged pitting resistance over 110 days with no sign of corrosion or delamination. The EIS data fitting suggested the formation of a protective layer that is responsible for the extended corrosion resistance of the Cr-HA-coated sample. The scratch test indicated that the Cr-HA nanocomposite coating might offer short-term self-healing properties in the 3.5% NaCl corrosive media. Graphical Abstract</description><subject>Aeration</subject><subject>Aluminum base alloys</subject><subject>Atomic structure</subject><subject>Calcium ions</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Corrosion</subject><subject>Corrosion prevention</subject><subject>Corrosion resistance</subject><subject>Crystal structure</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Glass</subject><subject>Hydroxyapatite</subject><subject>Inorganic Chemistry</subject><subject>Materials Science</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper: Sol-gel and hybrid materials with surface modification for applications</subject><subject>Pattern analysis</subject><subject>Photomicrographs</subject><subject>Pitting (corrosion)</subject><subject>Protective coatings</subject><subject>Scratch tests</subject><subject>Silica gel</subject><subject>Silicon dioxide</subject><subject>Sol-gel processes</subject><subject>Substitutes</subject><subject>Substrate inhibition</subject><subject>Synthesis</subject><subject>Trivalent chromium</subject><subject>X-ray diffraction</subject><issn>0928-0707</issn><issn>1573-4846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UMtOwzAQtBBIlMIPcIrEBQ6mazuxXW5VxSNSJS5wtvKw01RpXOwE6A2-gT_kS3AJiBunHe3u7MwOQqcELgmAmHgCU0EwUIaBEymw2EMjkgiGYxnzfTSCKZUYBIhDdOT9CgCSmIgRep8vnV3X_fo8TdML7Pvcd3XXd7qMltvS2ddttslCR0983dRFFnnbfL59VLqJChsGbXUVdfYlc6WPWvsc2pXTuv0dRsa6gJ2zvrZttHG200W3g9ZEsxkFGh-jA5M1Xp_81DF6vLl-mN_hxf1tOp8tcME463Bi2DTJBZiSS0oZFDwHIfPwtiGkFDJhMSUJ0WyaSZLpxBSFMDzPiZGx4BCzMTob7gYTT732nVrZ3rVBUlHJOY1FEoTGiA5bRbDsnTZq4-p15raKgNpFrYaoVYhafUetRCCxgeTDcltp93f6H9YXdBGDTA</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Elbasuney, Sherif</creator><creator>Naeem, Ibrahim</creator><creator>Mokhtar, Mohamed</creator><creator>Sheashea, Mohamed</creator><creator>Zorainy, Mahmoud</creator><creator>El-Sayyad, Gharieb S.</creator><creator>Gobara, Mohamed</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-5410-7936</orcidid></search><sort><creationdate>20231001</creationdate><title>Chromium(III)-substituted hydroxyapatite/silica sol–gel coating: towards novel green coating for corrosion protection of AA2024</title><author>Elbasuney, Sherif ; Naeem, Ibrahim ; Mokhtar, Mohamed ; Sheashea, Mohamed ; Zorainy, Mahmoud ; El-Sayyad, Gharieb S. ; Gobara, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-5f395b70fd682230c6b078b097f11d785342151e39a81ae5fcc7f6bb1f8476043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aeration</topic><topic>Aluminum base alloys</topic><topic>Atomic structure</topic><topic>Calcium ions</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Corrosion</topic><topic>Corrosion prevention</topic><topic>Corrosion resistance</topic><topic>Crystal structure</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Glass</topic><topic>Hydroxyapatite</topic><topic>Inorganic Chemistry</topic><topic>Materials Science</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper: Sol-gel and hybrid materials with surface modification for applications</topic><topic>Pattern analysis</topic><topic>Photomicrographs</topic><topic>Pitting (corrosion)</topic><topic>Protective coatings</topic><topic>Scratch tests</topic><topic>Silica gel</topic><topic>Silicon dioxide</topic><topic>Sol-gel processes</topic><topic>Substitutes</topic><topic>Substrate inhibition</topic><topic>Synthesis</topic><topic>Trivalent chromium</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elbasuney, Sherif</creatorcontrib><creatorcontrib>Naeem, Ibrahim</creatorcontrib><creatorcontrib>Mokhtar, Mohamed</creatorcontrib><creatorcontrib>Sheashea, Mohamed</creatorcontrib><creatorcontrib>Zorainy, Mahmoud</creatorcontrib><creatorcontrib>El-Sayyad, Gharieb S.</creatorcontrib><creatorcontrib>Gobara, Mohamed</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of sol-gel science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elbasuney, Sherif</au><au>Naeem, Ibrahim</au><au>Mokhtar, Mohamed</au><au>Sheashea, Mohamed</au><au>Zorainy, Mahmoud</au><au>El-Sayyad, Gharieb S.</au><au>Gobara, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chromium(III)-substituted hydroxyapatite/silica sol–gel coating: towards novel green coating for corrosion protection of AA2024</atitle><jtitle>Journal of sol-gel science and technology</jtitle><stitle>J Sol-Gel Sci Technol</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>108</volume><issue>1</issue><spage>200</spage><epage>217</epage><pages>200-217</pages><issn>0928-0707</issn><eissn>1573-4846</eissn><abstract>A novel Cr-substituted hydroxyapatite (Cr-HA) nanoparticles were synthesized via continuous hydrothermal technique. Moreover, the synthesized material was embedded into a silica sol–gel matrix and applied on an AA2024 substrate to evaluate the corrosion inhibition efficiency of the coating. TEM and SEM micrographs confirmed the development of Cr-HA nanorods of 20 nm width and 6 µm length. XRD diffractograms demonstrated the evolution of a new crystalline structure; the XRD pattern was analyzed by Material Studio software which confirms the replacement of Ca 2+ by Cr 3+ . The EDX mapping revealed a uniform distribution of Ca and Cr ions within the Cr-HA crystal structure. The atomic ratio of Ca 2+ : Cr 3+ was reported to be 4:1 respectively. The Cr-HA nanoparticles were uniformly distributed in a silica sol–gel matrix and applied on an AA2024 substrate. The corrosion performance of the Cr-HA sol–gel coating composite was evaluated using Electrochemical Impedance Spectroscopy (EIS) in an aerated 3.5% NaCl solution and the results compared to those of neat silica sol–gel coating. Whereas pitting corrosion was also observed in the case of a neat sol–gel coated sample within 5 days of immersion, Cr-HA sol–gel coated AA2024 exhibited prolonged pitting resistance over 110 days with no sign of corrosion or delamination. The EIS data fitting suggested the formation of a protective layer that is responsible for the extended corrosion resistance of the Cr-HA-coated sample. The scratch test indicated that the Cr-HA nanocomposite coating might offer short-term self-healing properties in the 3.5% NaCl corrosive media. Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10971-023-06187-7</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5410-7936</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0928-0707
ispartof Journal of sol-gel science and technology, 2023-10, Vol.108 (1), p.200-217
issn 0928-0707
1573-4846
language eng
recordid cdi_proquest_journals_2866247536
source SpringerLink Journals - AutoHoldings
subjects Aeration
Aluminum base alloys
Atomic structure
Calcium ions
Ceramics
Chemistry and Materials Science
Composites
Corrosion
Corrosion prevention
Corrosion resistance
Crystal structure
Electrochemical impedance spectroscopy
Glass
Hydroxyapatite
Inorganic Chemistry
Materials Science
Nanocomposites
Nanoparticles
Nanorods
Nanotechnology
Natural Materials
Optical and Electronic Materials
Original Paper: Sol-gel and hybrid materials with surface modification for applications
Pattern analysis
Photomicrographs
Pitting (corrosion)
Protective coatings
Scratch tests
Silica gel
Silicon dioxide
Sol-gel processes
Substitutes
Substrate inhibition
Synthesis
Trivalent chromium
X-ray diffraction
title Chromium(III)-substituted hydroxyapatite/silica sol–gel coating: towards novel green coating for corrosion protection of AA2024
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A52%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chromium(III)-substituted%20hydroxyapatite/silica%20sol%E2%80%93gel%20coating:%20towards%20novel%20green%20coating%20for%20corrosion%20protection%20of%20AA2024&rft.jtitle=Journal%20of%20sol-gel%20science%20and%20technology&rft.au=Elbasuney,%20Sherif&rft.date=2023-10-01&rft.volume=108&rft.issue=1&rft.spage=200&rft.epage=217&rft.pages=200-217&rft.issn=0928-0707&rft.eissn=1573-4846&rft_id=info:doi/10.1007/s10971-023-06187-7&rft_dat=%3Cproquest_cross%3E2866247536%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866247536&rft_id=info:pmid/&rfr_iscdi=true