Chromium(III)-substituted hydroxyapatite/silica sol–gel coating: towards novel green coating for corrosion protection of AA2024
A novel Cr-substituted hydroxyapatite (Cr-HA) nanoparticles were synthesized via continuous hydrothermal technique. Moreover, the synthesized material was embedded into a silica sol–gel matrix and applied on an AA2024 substrate to evaluate the corrosion inhibition efficiency of the coating. TEM and...
Gespeichert in:
Veröffentlicht in: | Journal of sol-gel science and technology 2023-10, Vol.108 (1), p.200-217 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 217 |
---|---|
container_issue | 1 |
container_start_page | 200 |
container_title | Journal of sol-gel science and technology |
container_volume | 108 |
creator | Elbasuney, Sherif Naeem, Ibrahim Mokhtar, Mohamed Sheashea, Mohamed Zorainy, Mahmoud El-Sayyad, Gharieb S. Gobara, Mohamed |
description | A novel Cr-substituted hydroxyapatite (Cr-HA) nanoparticles were synthesized via continuous hydrothermal technique. Moreover, the synthesized material was embedded into a silica sol–gel matrix and applied on an AA2024 substrate to evaluate the corrosion inhibition efficiency of the coating. TEM and SEM micrographs confirmed the development of Cr-HA nanorods of 20 nm width and 6 µm length. XRD diffractograms demonstrated the evolution of a new crystalline structure; the XRD pattern was analyzed by Material Studio software which confirms the replacement of Ca
2+
by Cr
3+
. The EDX mapping revealed a uniform distribution of Ca and Cr ions within the Cr-HA crystal structure. The atomic ratio of Ca
2+
: Cr
3+
was reported to be 4:1 respectively. The Cr-HA nanoparticles were uniformly distributed in a silica sol–gel matrix and applied on an AA2024 substrate. The corrosion performance of the Cr-HA sol–gel coating composite was evaluated using Electrochemical Impedance Spectroscopy (EIS) in an aerated 3.5% NaCl solution and the results compared to those of neat silica sol–gel coating. Whereas pitting corrosion was also observed in the case of a neat sol–gel coated sample within 5 days of immersion, Cr-HA sol–gel coated AA2024 exhibited prolonged pitting resistance over 110 days with no sign of corrosion or delamination. The EIS data fitting suggested the formation of a protective layer that is responsible for the extended corrosion resistance of the Cr-HA-coated sample. The scratch test indicated that the Cr-HA nanocomposite coating might offer short-term self-healing properties in the 3.5% NaCl corrosive media.
Graphical Abstract |
doi_str_mv | 10.1007/s10971-023-06187-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2866247536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866247536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-5f395b70fd682230c6b078b097f11d785342151e39a81ae5fcc7f6bb1f8476043</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcIrEBQ6mazuxXW5VxSNSJS5wtvKw01RpXOwE6A2-gT_kS3AJiBunHe3u7MwOQqcELgmAmHgCU0EwUIaBEymw2EMjkgiGYxnzfTSCKZUYBIhDdOT9CgCSmIgRep8vnV3X_fo8TdML7Pvcd3XXd7qMltvS2ddttslCR0983dRFFnnbfL59VLqJChsGbXUVdfYlc6WPWvsc2pXTuv0dRsa6gJ2zvrZttHG200W3g9ZEsxkFGh-jA5M1Xp_81DF6vLl-mN_hxf1tOp8tcME463Bi2DTJBZiSS0oZFDwHIfPwtiGkFDJhMSUJ0WyaSZLpxBSFMDzPiZGx4BCzMTob7gYTT732nVrZ3rVBUlHJOY1FEoTGiA5bRbDsnTZq4-p15raKgNpFrYaoVYhafUetRCCxgeTDcltp93f6H9YXdBGDTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866247536</pqid></control><display><type>article</type><title>Chromium(III)-substituted hydroxyapatite/silica sol–gel coating: towards novel green coating for corrosion protection of AA2024</title><source>SpringerLink Journals - AutoHoldings</source><creator>Elbasuney, Sherif ; Naeem, Ibrahim ; Mokhtar, Mohamed ; Sheashea, Mohamed ; Zorainy, Mahmoud ; El-Sayyad, Gharieb S. ; Gobara, Mohamed</creator><creatorcontrib>Elbasuney, Sherif ; Naeem, Ibrahim ; Mokhtar, Mohamed ; Sheashea, Mohamed ; Zorainy, Mahmoud ; El-Sayyad, Gharieb S. ; Gobara, Mohamed</creatorcontrib><description>A novel Cr-substituted hydroxyapatite (Cr-HA) nanoparticles were synthesized via continuous hydrothermal technique. Moreover, the synthesized material was embedded into a silica sol–gel matrix and applied on an AA2024 substrate to evaluate the corrosion inhibition efficiency of the coating. TEM and SEM micrographs confirmed the development of Cr-HA nanorods of 20 nm width and 6 µm length. XRD diffractograms demonstrated the evolution of a new crystalline structure; the XRD pattern was analyzed by Material Studio software which confirms the replacement of Ca
2+
by Cr
3+
. The EDX mapping revealed a uniform distribution of Ca and Cr ions within the Cr-HA crystal structure. The atomic ratio of Ca
2+
: Cr
3+
was reported to be 4:1 respectively. The Cr-HA nanoparticles were uniformly distributed in a silica sol–gel matrix and applied on an AA2024 substrate. The corrosion performance of the Cr-HA sol–gel coating composite was evaluated using Electrochemical Impedance Spectroscopy (EIS) in an aerated 3.5% NaCl solution and the results compared to those of neat silica sol–gel coating. Whereas pitting corrosion was also observed in the case of a neat sol–gel coated sample within 5 days of immersion, Cr-HA sol–gel coated AA2024 exhibited prolonged pitting resistance over 110 days with no sign of corrosion or delamination. The EIS data fitting suggested the formation of a protective layer that is responsible for the extended corrosion resistance of the Cr-HA-coated sample. The scratch test indicated that the Cr-HA nanocomposite coating might offer short-term self-healing properties in the 3.5% NaCl corrosive media.
Graphical Abstract</description><identifier>ISSN: 0928-0707</identifier><identifier>EISSN: 1573-4846</identifier><identifier>DOI: 10.1007/s10971-023-06187-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aeration ; Aluminum base alloys ; Atomic structure ; Calcium ions ; Ceramics ; Chemistry and Materials Science ; Composites ; Corrosion ; Corrosion prevention ; Corrosion resistance ; Crystal structure ; Electrochemical impedance spectroscopy ; Glass ; Hydroxyapatite ; Inorganic Chemistry ; Materials Science ; Nanocomposites ; Nanoparticles ; Nanorods ; Nanotechnology ; Natural Materials ; Optical and Electronic Materials ; Original Paper: Sol-gel and hybrid materials with surface modification for applications ; Pattern analysis ; Photomicrographs ; Pitting (corrosion) ; Protective coatings ; Scratch tests ; Silica gel ; Silicon dioxide ; Sol-gel processes ; Substitutes ; Substrate inhibition ; Synthesis ; Trivalent chromium ; X-ray diffraction</subject><ispartof>Journal of sol-gel science and technology, 2023-10, Vol.108 (1), p.200-217</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-5f395b70fd682230c6b078b097f11d785342151e39a81ae5fcc7f6bb1f8476043</citedby><cites>FETCH-LOGICAL-c363t-5f395b70fd682230c6b078b097f11d785342151e39a81ae5fcc7f6bb1f8476043</cites><orcidid>0000-0001-5410-7936</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10971-023-06187-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10971-023-06187-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Elbasuney, Sherif</creatorcontrib><creatorcontrib>Naeem, Ibrahim</creatorcontrib><creatorcontrib>Mokhtar, Mohamed</creatorcontrib><creatorcontrib>Sheashea, Mohamed</creatorcontrib><creatorcontrib>Zorainy, Mahmoud</creatorcontrib><creatorcontrib>El-Sayyad, Gharieb S.</creatorcontrib><creatorcontrib>Gobara, Mohamed</creatorcontrib><title>Chromium(III)-substituted hydroxyapatite/silica sol–gel coating: towards novel green coating for corrosion protection of AA2024</title><title>Journal of sol-gel science and technology</title><addtitle>J Sol-Gel Sci Technol</addtitle><description>A novel Cr-substituted hydroxyapatite (Cr-HA) nanoparticles were synthesized via continuous hydrothermal technique. Moreover, the synthesized material was embedded into a silica sol–gel matrix and applied on an AA2024 substrate to evaluate the corrosion inhibition efficiency of the coating. TEM and SEM micrographs confirmed the development of Cr-HA nanorods of 20 nm width and 6 µm length. XRD diffractograms demonstrated the evolution of a new crystalline structure; the XRD pattern was analyzed by Material Studio software which confirms the replacement of Ca
2+
by Cr
3+
. The EDX mapping revealed a uniform distribution of Ca and Cr ions within the Cr-HA crystal structure. The atomic ratio of Ca
2+
: Cr
3+
was reported to be 4:1 respectively. The Cr-HA nanoparticles were uniformly distributed in a silica sol–gel matrix and applied on an AA2024 substrate. The corrosion performance of the Cr-HA sol–gel coating composite was evaluated using Electrochemical Impedance Spectroscopy (EIS) in an aerated 3.5% NaCl solution and the results compared to those of neat silica sol–gel coating. Whereas pitting corrosion was also observed in the case of a neat sol–gel coated sample within 5 days of immersion, Cr-HA sol–gel coated AA2024 exhibited prolonged pitting resistance over 110 days with no sign of corrosion or delamination. The EIS data fitting suggested the formation of a protective layer that is responsible for the extended corrosion resistance of the Cr-HA-coated sample. The scratch test indicated that the Cr-HA nanocomposite coating might offer short-term self-healing properties in the 3.5% NaCl corrosive media.
Graphical Abstract</description><subject>Aeration</subject><subject>Aluminum base alloys</subject><subject>Atomic structure</subject><subject>Calcium ions</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Corrosion</subject><subject>Corrosion prevention</subject><subject>Corrosion resistance</subject><subject>Crystal structure</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Glass</subject><subject>Hydroxyapatite</subject><subject>Inorganic Chemistry</subject><subject>Materials Science</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper: Sol-gel and hybrid materials with surface modification for applications</subject><subject>Pattern analysis</subject><subject>Photomicrographs</subject><subject>Pitting (corrosion)</subject><subject>Protective coatings</subject><subject>Scratch tests</subject><subject>Silica gel</subject><subject>Silicon dioxide</subject><subject>Sol-gel processes</subject><subject>Substitutes</subject><subject>Substrate inhibition</subject><subject>Synthesis</subject><subject>Trivalent chromium</subject><subject>X-ray diffraction</subject><issn>0928-0707</issn><issn>1573-4846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UMtOwzAQtBBIlMIPcIrEBQ6mazuxXW5VxSNSJS5wtvKw01RpXOwE6A2-gT_kS3AJiBunHe3u7MwOQqcELgmAmHgCU0EwUIaBEymw2EMjkgiGYxnzfTSCKZUYBIhDdOT9CgCSmIgRep8vnV3X_fo8TdML7Pvcd3XXd7qMltvS2ddttslCR0983dRFFnnbfL59VLqJChsGbXUVdfYlc6WPWvsc2pXTuv0dRsa6gJ2zvrZttHG200W3g9ZEsxkFGh-jA5M1Xp_81DF6vLl-mN_hxf1tOp8tcME463Bi2DTJBZiSS0oZFDwHIfPwtiGkFDJhMSUJ0WyaSZLpxBSFMDzPiZGx4BCzMTob7gYTT732nVrZ3rVBUlHJOY1FEoTGiA5bRbDsnTZq4-p15raKgNpFrYaoVYhafUetRCCxgeTDcltp93f6H9YXdBGDTA</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Elbasuney, Sherif</creator><creator>Naeem, Ibrahim</creator><creator>Mokhtar, Mohamed</creator><creator>Sheashea, Mohamed</creator><creator>Zorainy, Mahmoud</creator><creator>El-Sayyad, Gharieb S.</creator><creator>Gobara, Mohamed</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-5410-7936</orcidid></search><sort><creationdate>20231001</creationdate><title>Chromium(III)-substituted hydroxyapatite/silica sol–gel coating: towards novel green coating for corrosion protection of AA2024</title><author>Elbasuney, Sherif ; Naeem, Ibrahim ; Mokhtar, Mohamed ; Sheashea, Mohamed ; Zorainy, Mahmoud ; El-Sayyad, Gharieb S. ; Gobara, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-5f395b70fd682230c6b078b097f11d785342151e39a81ae5fcc7f6bb1f8476043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aeration</topic><topic>Aluminum base alloys</topic><topic>Atomic structure</topic><topic>Calcium ions</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Corrosion</topic><topic>Corrosion prevention</topic><topic>Corrosion resistance</topic><topic>Crystal structure</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Glass</topic><topic>Hydroxyapatite</topic><topic>Inorganic Chemistry</topic><topic>Materials Science</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper: Sol-gel and hybrid materials with surface modification for applications</topic><topic>Pattern analysis</topic><topic>Photomicrographs</topic><topic>Pitting (corrosion)</topic><topic>Protective coatings</topic><topic>Scratch tests</topic><topic>Silica gel</topic><topic>Silicon dioxide</topic><topic>Sol-gel processes</topic><topic>Substitutes</topic><topic>Substrate inhibition</topic><topic>Synthesis</topic><topic>Trivalent chromium</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elbasuney, Sherif</creatorcontrib><creatorcontrib>Naeem, Ibrahim</creatorcontrib><creatorcontrib>Mokhtar, Mohamed</creatorcontrib><creatorcontrib>Sheashea, Mohamed</creatorcontrib><creatorcontrib>Zorainy, Mahmoud</creatorcontrib><creatorcontrib>El-Sayyad, Gharieb S.</creatorcontrib><creatorcontrib>Gobara, Mohamed</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of sol-gel science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elbasuney, Sherif</au><au>Naeem, Ibrahim</au><au>Mokhtar, Mohamed</au><au>Sheashea, Mohamed</au><au>Zorainy, Mahmoud</au><au>El-Sayyad, Gharieb S.</au><au>Gobara, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chromium(III)-substituted hydroxyapatite/silica sol–gel coating: towards novel green coating for corrosion protection of AA2024</atitle><jtitle>Journal of sol-gel science and technology</jtitle><stitle>J Sol-Gel Sci Technol</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>108</volume><issue>1</issue><spage>200</spage><epage>217</epage><pages>200-217</pages><issn>0928-0707</issn><eissn>1573-4846</eissn><abstract>A novel Cr-substituted hydroxyapatite (Cr-HA) nanoparticles were synthesized via continuous hydrothermal technique. Moreover, the synthesized material was embedded into a silica sol–gel matrix and applied on an AA2024 substrate to evaluate the corrosion inhibition efficiency of the coating. TEM and SEM micrographs confirmed the development of Cr-HA nanorods of 20 nm width and 6 µm length. XRD diffractograms demonstrated the evolution of a new crystalline structure; the XRD pattern was analyzed by Material Studio software which confirms the replacement of Ca
2+
by Cr
3+
. The EDX mapping revealed a uniform distribution of Ca and Cr ions within the Cr-HA crystal structure. The atomic ratio of Ca
2+
: Cr
3+
was reported to be 4:1 respectively. The Cr-HA nanoparticles were uniformly distributed in a silica sol–gel matrix and applied on an AA2024 substrate. The corrosion performance of the Cr-HA sol–gel coating composite was evaluated using Electrochemical Impedance Spectroscopy (EIS) in an aerated 3.5% NaCl solution and the results compared to those of neat silica sol–gel coating. Whereas pitting corrosion was also observed in the case of a neat sol–gel coated sample within 5 days of immersion, Cr-HA sol–gel coated AA2024 exhibited prolonged pitting resistance over 110 days with no sign of corrosion or delamination. The EIS data fitting suggested the formation of a protective layer that is responsible for the extended corrosion resistance of the Cr-HA-coated sample. The scratch test indicated that the Cr-HA nanocomposite coating might offer short-term self-healing properties in the 3.5% NaCl corrosive media.
Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10971-023-06187-7</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5410-7936</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0928-0707 |
ispartof | Journal of sol-gel science and technology, 2023-10, Vol.108 (1), p.200-217 |
issn | 0928-0707 1573-4846 |
language | eng |
recordid | cdi_proquest_journals_2866247536 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aeration Aluminum base alloys Atomic structure Calcium ions Ceramics Chemistry and Materials Science Composites Corrosion Corrosion prevention Corrosion resistance Crystal structure Electrochemical impedance spectroscopy Glass Hydroxyapatite Inorganic Chemistry Materials Science Nanocomposites Nanoparticles Nanorods Nanotechnology Natural Materials Optical and Electronic Materials Original Paper: Sol-gel and hybrid materials with surface modification for applications Pattern analysis Photomicrographs Pitting (corrosion) Protective coatings Scratch tests Silica gel Silicon dioxide Sol-gel processes Substitutes Substrate inhibition Synthesis Trivalent chromium X-ray diffraction |
title | Chromium(III)-substituted hydroxyapatite/silica sol–gel coating: towards novel green coating for corrosion protection of AA2024 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A52%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chromium(III)-substituted%20hydroxyapatite/silica%20sol%E2%80%93gel%20coating:%20towards%20novel%20green%20coating%20for%20corrosion%20protection%20of%20AA2024&rft.jtitle=Journal%20of%20sol-gel%20science%20and%20technology&rft.au=Elbasuney,%20Sherif&rft.date=2023-10-01&rft.volume=108&rft.issue=1&rft.spage=200&rft.epage=217&rft.pages=200-217&rft.issn=0928-0707&rft.eissn=1573-4846&rft_id=info:doi/10.1007/s10971-023-06187-7&rft_dat=%3Cproquest_cross%3E2866247536%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866247536&rft_id=info:pmid/&rfr_iscdi=true |