A Note on the Krylov Solvability of Compact Normal Operators on Hilbert Space

We analyse the Krylov solvability of inverse linear problems on Hilbert space H where the underlying operator is compact and normal. Krylov solvability is an important feature of inverse linear problems that has profound implications in theoretical and applied numerical analysis as it is critical to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex analysis and operator theory 2023-10, Vol.17 (7), Article 109
1. Verfasser: Caruso, Noè Angelo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Complex analysis and operator theory
container_volume 17
creator Caruso, Noè Angelo
description We analyse the Krylov solvability of inverse linear problems on Hilbert space H where the underlying operator is compact and normal. Krylov solvability is an important feature of inverse linear problems that has profound implications in theoretical and applied numerical analysis as it is critical to understand the utility of Krylov based methods for solving inverse problems. Our results explicitly describe for the first time the Krylov subspace for such operators given any datum vector g ∈ H , as well as prove that all inverse linear problems are Krylov solvable provided that g is in the range of such an operator. We therefore expand our knowledge of the class of Krylov solvable operators to include the normal compact operators. We close the study by proving an isomorphism between the closed Krylov subspace for a general bounded normal operator and an L 2 -measure space based on the scalar spectral measure.
doi_str_mv 10.1007/s11785-023-01413-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2866072364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866072364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-bdb479afca132dfe3bf63f9d0f159a4ef17ab15d725975b8d7b62342c60d9dfb3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMQf8FTseqwoootChMFt2YkOqtA62W6n_vi5BsLHc3fC8d7oHgGuMbjFC4i5iLKqyQIQWCDOc6wkYYc5xURFOTn_nkp2DixhXCHEkpByBlwl89clCv4Hp08LnsO_8Di59t9Om7dq0h97BqV_3uk6ZDGvdwUVvg04-xGNq1nbGhgSXmbCX4MzpLtqrnz4G7w_3b9NZMV88Pk0n86KmmKXCNIYJqV2tMSWNs9Q4Tp1skMOl1Mw6LLTBZSNIKUVpqkYYTigjNUeNbJyhY3Az7O2D_9ramNTKb8Mmn1Sk4vk1QjnLFBmoOvgYg3WqD-1ah73CSB21qUGbytrUtzaFcogOoZjhzYcNf6v_SR0AC_Vvtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866072364</pqid></control><display><type>article</type><title>A Note on the Krylov Solvability of Compact Normal Operators on Hilbert Space</title><source>SpringerNature Complete Journals</source><creator>Caruso, Noè Angelo</creator><creatorcontrib>Caruso, Noè Angelo</creatorcontrib><description>We analyse the Krylov solvability of inverse linear problems on Hilbert space H where the underlying operator is compact and normal. Krylov solvability is an important feature of inverse linear problems that has profound implications in theoretical and applied numerical analysis as it is critical to understand the utility of Krylov based methods for solving inverse problems. Our results explicitly describe for the first time the Krylov subspace for such operators given any datum vector g ∈ H , as well as prove that all inverse linear problems are Krylov solvable provided that g is in the range of such an operator. We therefore expand our knowledge of the class of Krylov solvable operators to include the normal compact operators. We close the study by proving an isomorphism between the closed Krylov subspace for a general bounded normal operator and an L 2 -measure space based on the scalar spectral measure.</description><identifier>ISSN: 1661-8254</identifier><identifier>EISSN: 1661-8262</identifier><identifier>DOI: 10.1007/s11785-023-01413-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Hilbert space ; Inverse problems ; Isomorphism ; Linear operators ; Mathematics ; Mathematics and Statistics ; Numerical analysis ; Operator Theory ; Operators (mathematics)</subject><ispartof>Complex analysis and operator theory, 2023-10, Vol.17 (7), Article 109</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-bdb479afca132dfe3bf63f9d0f159a4ef17ab15d725975b8d7b62342c60d9dfb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11785-023-01413-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11785-023-01413-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Caruso, Noè Angelo</creatorcontrib><title>A Note on the Krylov Solvability of Compact Normal Operators on Hilbert Space</title><title>Complex analysis and operator theory</title><addtitle>Complex Anal. Oper. Theory</addtitle><description>We analyse the Krylov solvability of inverse linear problems on Hilbert space H where the underlying operator is compact and normal. Krylov solvability is an important feature of inverse linear problems that has profound implications in theoretical and applied numerical analysis as it is critical to understand the utility of Krylov based methods for solving inverse problems. Our results explicitly describe for the first time the Krylov subspace for such operators given any datum vector g ∈ H , as well as prove that all inverse linear problems are Krylov solvable provided that g is in the range of such an operator. We therefore expand our knowledge of the class of Krylov solvable operators to include the normal compact operators. We close the study by proving an isomorphism between the closed Krylov subspace for a general bounded normal operator and an L 2 -measure space based on the scalar spectral measure.</description><subject>Analysis</subject><subject>Hilbert space</subject><subject>Inverse problems</subject><subject>Isomorphism</subject><subject>Linear operators</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical analysis</subject><subject>Operator Theory</subject><subject>Operators (mathematics)</subject><issn>1661-8254</issn><issn>1661-8262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMQf8FTseqwoootChMFt2YkOqtA62W6n_vi5BsLHc3fC8d7oHgGuMbjFC4i5iLKqyQIQWCDOc6wkYYc5xURFOTn_nkp2DixhXCHEkpByBlwl89clCv4Hp08LnsO_8Di59t9Om7dq0h97BqV_3uk6ZDGvdwUVvg04-xGNq1nbGhgSXmbCX4MzpLtqrnz4G7w_3b9NZMV88Pk0n86KmmKXCNIYJqV2tMSWNs9Q4Tp1skMOl1Mw6LLTBZSNIKUVpqkYYTigjNUeNbJyhY3Az7O2D_9ramNTKb8Mmn1Sk4vk1QjnLFBmoOvgYg3WqD-1ah73CSB21qUGbytrUtzaFcogOoZjhzYcNf6v_SR0AC_Vvtg</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Caruso, Noè Angelo</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>A Note on the Krylov Solvability of Compact Normal Operators on Hilbert Space</title><author>Caruso, Noè Angelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-bdb479afca132dfe3bf63f9d0f159a4ef17ab15d725975b8d7b62342c60d9dfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Hilbert space</topic><topic>Inverse problems</topic><topic>Isomorphism</topic><topic>Linear operators</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical analysis</topic><topic>Operator Theory</topic><topic>Operators (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caruso, Noè Angelo</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Complex analysis and operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caruso, Noè Angelo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Note on the Krylov Solvability of Compact Normal Operators on Hilbert Space</atitle><jtitle>Complex analysis and operator theory</jtitle><stitle>Complex Anal. Oper. Theory</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>17</volume><issue>7</issue><artnum>109</artnum><issn>1661-8254</issn><eissn>1661-8262</eissn><abstract>We analyse the Krylov solvability of inverse linear problems on Hilbert space H where the underlying operator is compact and normal. Krylov solvability is an important feature of inverse linear problems that has profound implications in theoretical and applied numerical analysis as it is critical to understand the utility of Krylov based methods for solving inverse problems. Our results explicitly describe for the first time the Krylov subspace for such operators given any datum vector g ∈ H , as well as prove that all inverse linear problems are Krylov solvable provided that g is in the range of such an operator. We therefore expand our knowledge of the class of Krylov solvable operators to include the normal compact operators. We close the study by proving an isomorphism between the closed Krylov subspace for a general bounded normal operator and an L 2 -measure space based on the scalar spectral measure.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11785-023-01413-0</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1661-8254
ispartof Complex analysis and operator theory, 2023-10, Vol.17 (7), Article 109
issn 1661-8254
1661-8262
language eng
recordid cdi_proquest_journals_2866072364
source SpringerNature Complete Journals
subjects Analysis
Hilbert space
Inverse problems
Isomorphism
Linear operators
Mathematics
Mathematics and Statistics
Numerical analysis
Operator Theory
Operators (mathematics)
title A Note on the Krylov Solvability of Compact Normal Operators on Hilbert Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A00%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Note%20on%20the%20Krylov%20Solvability%20of%20Compact%20Normal%20Operators%20on%20Hilbert%20Space&rft.jtitle=Complex%20analysis%20and%20operator%20theory&rft.au=Caruso,%20No%C3%A8%20Angelo&rft.date=2023-10-01&rft.volume=17&rft.issue=7&rft.artnum=109&rft.issn=1661-8254&rft.eissn=1661-8262&rft_id=info:doi/10.1007/s11785-023-01413-0&rft_dat=%3Cproquest_cross%3E2866072364%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866072364&rft_id=info:pmid/&rfr_iscdi=true