An Object Detection Method Using Probability Maps for Instance Segmentation to Mask Background
This paper proposes a two-step detector called segmented object detection, whose performance is improved by masking the background region. Previous single-stage object detection methods suffer from the problem of imbalance between foreground and background classes, where the background occupies more...
Gespeichert in:
Veröffentlicht in: | Journal of advanced computational intelligence and intelligent informatics 2023-09, Vol.27 (5), p.886-895 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 895 |
---|---|
container_issue | 5 |
container_start_page | 886 |
container_title | Journal of advanced computational intelligence and intelligent informatics |
container_volume | 27 |
creator | Uchinoura, Shinji Miyao, Junichi Kurita, Takio |
description | This paper proposes a two-step detector called segmented object detection, whose performance is improved by masking the background region. Previous single-stage object detection methods suffer from the problem of imbalance between foreground and background classes, where the background occupies more regions in the image than the foreground. Thus, the loss from the background is firmly incorporated into the training. RetinaNet addresses this problem with Focal Loss, which focuses on foreground loss. Therefore, we propose a method that generates probability maps using instance segmentation in the first step and feeds back the generated maps as background masks in the second step as prior knowledge to reduce the influence of the background and enhance foreground training. We confirm that the detector can improve the accuracy by adding instance segmentation information to both the input and output rather than only to the output results. On the Cityscapes dataset, our method outperforms the state-of-the-art methods. |
doi_str_mv | 10.20965/jaciii.2023.p0886 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2866046546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866046546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-48046e8e1ebcc8621a0b06f9b535ef7190d139f3b69afb45970065c80d17af3d3</originalsourceid><addsrcrecordid>eNotkE9PAjEQxRujiUT5Ap6aeF6cbrule0T8RwLBRLm6abstdoEttuXAt7eCp_dm8mYm80PojsCohJpXD53UzrlclHS0ByH4BRoQIWghgLDL7CmjBRAK12gYYweQfcmBkQH6mvR4qTqjE34yKYvzPV6Y9O1bvIquX-P34JVUbuvSES_kPmLrA571McleG_xh1jvTJ3maSz4n4gY_Sr1ZB3_o21t0ZeU2muG_3qDVy_Pn9K2YL19n08m80KyEVDABjBthiFFaC14SCQq4rVVFK2PHpIaW0NpSxWtpFavqMQCvtMjtsbS0pTfo_rx3H_zPwcTUdP4Q-nyyKQXPr_KK8ZwqzykdfIzB2GYf3E6GY0OgOaFsziibP5TNCSX9BehQaEI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866046546</pqid></control><display><type>article</type><title>An Object Detection Method Using Probability Maps for Instance Segmentation to Mask Background</title><source>DOAJ Directory of Open Access Journals</source><creator>Uchinoura, Shinji ; Miyao, Junichi ; Kurita, Takio</creator><creatorcontrib>Uchinoura, Shinji ; Miyao, Junichi ; Kurita, Takio</creatorcontrib><description>This paper proposes a two-step detector called segmented object detection, whose performance is improved by masking the background region. Previous single-stage object detection methods suffer from the problem of imbalance between foreground and background classes, where the background occupies more regions in the image than the foreground. Thus, the loss from the background is firmly incorporated into the training. RetinaNet addresses this problem with Focal Loss, which focuses on foreground loss. Therefore, we propose a method that generates probability maps using instance segmentation in the first step and feeds back the generated maps as background masks in the second step as prior knowledge to reduce the influence of the background and enhance foreground training. We confirm that the detector can improve the accuracy by adding instance segmentation information to both the input and output rather than only to the output results. On the Cityscapes dataset, our method outperforms the state-of-the-art methods.</description><identifier>ISSN: 1343-0130</identifier><identifier>EISSN: 1883-8014</identifier><identifier>DOI: 10.20965/jaciii.2023.p0886</identifier><language>eng</language><publisher>Tokyo: Fuji Technology Press Co. Ltd</publisher><subject>Accuracy ; Boxes ; Image segmentation ; Instance segmentation ; Methods ; Neural networks ; Object recognition ; Sensors ; Training</subject><ispartof>Journal of advanced computational intelligence and intelligent informatics, 2023-09, Vol.27 (5), p.886-895</ispartof><rights>Copyright © 2023 Fuji Technology Press Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c420t-48046e8e1ebcc8621a0b06f9b535ef7190d139f3b69afb45970065c80d17af3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Uchinoura, Shinji</creatorcontrib><creatorcontrib>Miyao, Junichi</creatorcontrib><creatorcontrib>Kurita, Takio</creatorcontrib><title>An Object Detection Method Using Probability Maps for Instance Segmentation to Mask Background</title><title>Journal of advanced computational intelligence and intelligent informatics</title><description>This paper proposes a two-step detector called segmented object detection, whose performance is improved by masking the background region. Previous single-stage object detection methods suffer from the problem of imbalance between foreground and background classes, where the background occupies more regions in the image than the foreground. Thus, the loss from the background is firmly incorporated into the training. RetinaNet addresses this problem with Focal Loss, which focuses on foreground loss. Therefore, we propose a method that generates probability maps using instance segmentation in the first step and feeds back the generated maps as background masks in the second step as prior knowledge to reduce the influence of the background and enhance foreground training. We confirm that the detector can improve the accuracy by adding instance segmentation information to both the input and output rather than only to the output results. On the Cityscapes dataset, our method outperforms the state-of-the-art methods.</description><subject>Accuracy</subject><subject>Boxes</subject><subject>Image segmentation</subject><subject>Instance segmentation</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Sensors</subject><subject>Training</subject><issn>1343-0130</issn><issn>1883-8014</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkE9PAjEQxRujiUT5Ap6aeF6cbrule0T8RwLBRLm6abstdoEttuXAt7eCp_dm8mYm80PojsCohJpXD53UzrlclHS0ByH4BRoQIWghgLDL7CmjBRAK12gYYweQfcmBkQH6mvR4qTqjE34yKYvzPV6Y9O1bvIquX-P34JVUbuvSES_kPmLrA571McleG_xh1jvTJ3maSz4n4gY_Sr1ZB3_o21t0ZeU2muG_3qDVy_Pn9K2YL19n08m80KyEVDABjBthiFFaC14SCQq4rVVFK2PHpIaW0NpSxWtpFavqMQCvtMjtsbS0pTfo_rx3H_zPwcTUdP4Q-nyyKQXPr_KK8ZwqzykdfIzB2GYf3E6GY0OgOaFsziibP5TNCSX9BehQaEI</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Uchinoura, Shinji</creator><creator>Miyao, Junichi</creator><creator>Kurita, Takio</creator><general>Fuji Technology Press Co. Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230901</creationdate><title>An Object Detection Method Using Probability Maps for Instance Segmentation to Mask Background</title><author>Uchinoura, Shinji ; Miyao, Junichi ; Kurita, Takio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-48046e8e1ebcc8621a0b06f9b535ef7190d139f3b69afb45970065c80d17af3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Boxes</topic><topic>Image segmentation</topic><topic>Instance segmentation</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Sensors</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uchinoura, Shinji</creatorcontrib><creatorcontrib>Miyao, Junichi</creatorcontrib><creatorcontrib>Kurita, Takio</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of advanced computational intelligence and intelligent informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uchinoura, Shinji</au><au>Miyao, Junichi</au><au>Kurita, Takio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Object Detection Method Using Probability Maps for Instance Segmentation to Mask Background</atitle><jtitle>Journal of advanced computational intelligence and intelligent informatics</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>27</volume><issue>5</issue><spage>886</spage><epage>895</epage><pages>886-895</pages><issn>1343-0130</issn><eissn>1883-8014</eissn><abstract>This paper proposes a two-step detector called segmented object detection, whose performance is improved by masking the background region. Previous single-stage object detection methods suffer from the problem of imbalance between foreground and background classes, where the background occupies more regions in the image than the foreground. Thus, the loss from the background is firmly incorporated into the training. RetinaNet addresses this problem with Focal Loss, which focuses on foreground loss. Therefore, we propose a method that generates probability maps using instance segmentation in the first step and feeds back the generated maps as background masks in the second step as prior knowledge to reduce the influence of the background and enhance foreground training. We confirm that the detector can improve the accuracy by adding instance segmentation information to both the input and output rather than only to the output results. On the Cityscapes dataset, our method outperforms the state-of-the-art methods.</abstract><cop>Tokyo</cop><pub>Fuji Technology Press Co. Ltd</pub><doi>10.20965/jaciii.2023.p0886</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1343-0130 |
ispartof | Journal of advanced computational intelligence and intelligent informatics, 2023-09, Vol.27 (5), p.886-895 |
issn | 1343-0130 1883-8014 |
language | eng |
recordid | cdi_proquest_journals_2866046546 |
source | DOAJ Directory of Open Access Journals |
subjects | Accuracy Boxes Image segmentation Instance segmentation Methods Neural networks Object recognition Sensors Training |
title | An Object Detection Method Using Probability Maps for Instance Segmentation to Mask Background |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A05%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Object%20Detection%20Method%20Using%20Probability%20Maps%20for%20Instance%20Segmentation%20to%20Mask%20Background&rft.jtitle=Journal%20of%20advanced%20computational%20intelligence%20and%20intelligent%20informatics&rft.au=Uchinoura,%20Shinji&rft.date=2023-09-01&rft.volume=27&rft.issue=5&rft.spage=886&rft.epage=895&rft.pages=886-895&rft.issn=1343-0130&rft.eissn=1883-8014&rft_id=info:doi/10.20965/jaciii.2023.p0886&rft_dat=%3Cproquest_cross%3E2866046546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866046546&rft_id=info:pmid/&rfr_iscdi=true |