An Object Detection Method Using Probability Maps for Instance Segmentation to Mask Background

This paper proposes a two-step detector called segmented object detection, whose performance is improved by masking the background region. Previous single-stage object detection methods suffer from the problem of imbalance between foreground and background classes, where the background occupies more...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advanced computational intelligence and intelligent informatics 2023-09, Vol.27 (5), p.886-895
Hauptverfasser: Uchinoura, Shinji, Miyao, Junichi, Kurita, Takio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 895
container_issue 5
container_start_page 886
container_title Journal of advanced computational intelligence and intelligent informatics
container_volume 27
creator Uchinoura, Shinji
Miyao, Junichi
Kurita, Takio
description This paper proposes a two-step detector called segmented object detection, whose performance is improved by masking the background region. Previous single-stage object detection methods suffer from the problem of imbalance between foreground and background classes, where the background occupies more regions in the image than the foreground. Thus, the loss from the background is firmly incorporated into the training. RetinaNet addresses this problem with Focal Loss, which focuses on foreground loss. Therefore, we propose a method that generates probability maps using instance segmentation in the first step and feeds back the generated maps as background masks in the second step as prior knowledge to reduce the influence of the background and enhance foreground training. We confirm that the detector can improve the accuracy by adding instance segmentation information to both the input and output rather than only to the output results. On the Cityscapes dataset, our method outperforms the state-of-the-art methods.
doi_str_mv 10.20965/jaciii.2023.p0886
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2866046546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866046546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-48046e8e1ebcc8621a0b06f9b535ef7190d139f3b69afb45970065c80d17af3d3</originalsourceid><addsrcrecordid>eNotkE9PAjEQxRujiUT5Ap6aeF6cbrule0T8RwLBRLm6abstdoEttuXAt7eCp_dm8mYm80PojsCohJpXD53UzrlclHS0ByH4BRoQIWghgLDL7CmjBRAK12gYYweQfcmBkQH6mvR4qTqjE34yKYvzPV6Y9O1bvIquX-P34JVUbuvSES_kPmLrA571McleG_xh1jvTJ3maSz4n4gY_Sr1ZB3_o21t0ZeU2muG_3qDVy_Pn9K2YL19n08m80KyEVDABjBthiFFaC14SCQq4rVVFK2PHpIaW0NpSxWtpFavqMQCvtMjtsbS0pTfo_rx3H_zPwcTUdP4Q-nyyKQXPr_KK8ZwqzykdfIzB2GYf3E6GY0OgOaFsziibP5TNCSX9BehQaEI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866046546</pqid></control><display><type>article</type><title>An Object Detection Method Using Probability Maps for Instance Segmentation to Mask Background</title><source>DOAJ Directory of Open Access Journals</source><creator>Uchinoura, Shinji ; Miyao, Junichi ; Kurita, Takio</creator><creatorcontrib>Uchinoura, Shinji ; Miyao, Junichi ; Kurita, Takio</creatorcontrib><description>This paper proposes a two-step detector called segmented object detection, whose performance is improved by masking the background region. Previous single-stage object detection methods suffer from the problem of imbalance between foreground and background classes, where the background occupies more regions in the image than the foreground. Thus, the loss from the background is firmly incorporated into the training. RetinaNet addresses this problem with Focal Loss, which focuses on foreground loss. Therefore, we propose a method that generates probability maps using instance segmentation in the first step and feeds back the generated maps as background masks in the second step as prior knowledge to reduce the influence of the background and enhance foreground training. We confirm that the detector can improve the accuracy by adding instance segmentation information to both the input and output rather than only to the output results. On the Cityscapes dataset, our method outperforms the state-of-the-art methods.</description><identifier>ISSN: 1343-0130</identifier><identifier>EISSN: 1883-8014</identifier><identifier>DOI: 10.20965/jaciii.2023.p0886</identifier><language>eng</language><publisher>Tokyo: Fuji Technology Press Co. Ltd</publisher><subject>Accuracy ; Boxes ; Image segmentation ; Instance segmentation ; Methods ; Neural networks ; Object recognition ; Sensors ; Training</subject><ispartof>Journal of advanced computational intelligence and intelligent informatics, 2023-09, Vol.27 (5), p.886-895</ispartof><rights>Copyright © 2023 Fuji Technology Press Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c420t-48046e8e1ebcc8621a0b06f9b535ef7190d139f3b69afb45970065c80d17af3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Uchinoura, Shinji</creatorcontrib><creatorcontrib>Miyao, Junichi</creatorcontrib><creatorcontrib>Kurita, Takio</creatorcontrib><title>An Object Detection Method Using Probability Maps for Instance Segmentation to Mask Background</title><title>Journal of advanced computational intelligence and intelligent informatics</title><description>This paper proposes a two-step detector called segmented object detection, whose performance is improved by masking the background region. Previous single-stage object detection methods suffer from the problem of imbalance between foreground and background classes, where the background occupies more regions in the image than the foreground. Thus, the loss from the background is firmly incorporated into the training. RetinaNet addresses this problem with Focal Loss, which focuses on foreground loss. Therefore, we propose a method that generates probability maps using instance segmentation in the first step and feeds back the generated maps as background masks in the second step as prior knowledge to reduce the influence of the background and enhance foreground training. We confirm that the detector can improve the accuracy by adding instance segmentation information to both the input and output rather than only to the output results. On the Cityscapes dataset, our method outperforms the state-of-the-art methods.</description><subject>Accuracy</subject><subject>Boxes</subject><subject>Image segmentation</subject><subject>Instance segmentation</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Sensors</subject><subject>Training</subject><issn>1343-0130</issn><issn>1883-8014</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkE9PAjEQxRujiUT5Ap6aeF6cbrule0T8RwLBRLm6abstdoEttuXAt7eCp_dm8mYm80PojsCohJpXD53UzrlclHS0ByH4BRoQIWghgLDL7CmjBRAK12gYYweQfcmBkQH6mvR4qTqjE34yKYvzPV6Y9O1bvIquX-P34JVUbuvSES_kPmLrA571McleG_xh1jvTJ3maSz4n4gY_Sr1ZB3_o21t0ZeU2muG_3qDVy_Pn9K2YL19n08m80KyEVDABjBthiFFaC14SCQq4rVVFK2PHpIaW0NpSxWtpFavqMQCvtMjtsbS0pTfo_rx3H_zPwcTUdP4Q-nyyKQXPr_KK8ZwqzykdfIzB2GYf3E6GY0OgOaFsziibP5TNCSX9BehQaEI</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Uchinoura, Shinji</creator><creator>Miyao, Junichi</creator><creator>Kurita, Takio</creator><general>Fuji Technology Press Co. Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230901</creationdate><title>An Object Detection Method Using Probability Maps for Instance Segmentation to Mask Background</title><author>Uchinoura, Shinji ; Miyao, Junichi ; Kurita, Takio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-48046e8e1ebcc8621a0b06f9b535ef7190d139f3b69afb45970065c80d17af3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Boxes</topic><topic>Image segmentation</topic><topic>Instance segmentation</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Sensors</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uchinoura, Shinji</creatorcontrib><creatorcontrib>Miyao, Junichi</creatorcontrib><creatorcontrib>Kurita, Takio</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of advanced computational intelligence and intelligent informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uchinoura, Shinji</au><au>Miyao, Junichi</au><au>Kurita, Takio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Object Detection Method Using Probability Maps for Instance Segmentation to Mask Background</atitle><jtitle>Journal of advanced computational intelligence and intelligent informatics</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>27</volume><issue>5</issue><spage>886</spage><epage>895</epage><pages>886-895</pages><issn>1343-0130</issn><eissn>1883-8014</eissn><abstract>This paper proposes a two-step detector called segmented object detection, whose performance is improved by masking the background region. Previous single-stage object detection methods suffer from the problem of imbalance between foreground and background classes, where the background occupies more regions in the image than the foreground. Thus, the loss from the background is firmly incorporated into the training. RetinaNet addresses this problem with Focal Loss, which focuses on foreground loss. Therefore, we propose a method that generates probability maps using instance segmentation in the first step and feeds back the generated maps as background masks in the second step as prior knowledge to reduce the influence of the background and enhance foreground training. We confirm that the detector can improve the accuracy by adding instance segmentation information to both the input and output rather than only to the output results. On the Cityscapes dataset, our method outperforms the state-of-the-art methods.</abstract><cop>Tokyo</cop><pub>Fuji Technology Press Co. Ltd</pub><doi>10.20965/jaciii.2023.p0886</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1343-0130
ispartof Journal of advanced computational intelligence and intelligent informatics, 2023-09, Vol.27 (5), p.886-895
issn 1343-0130
1883-8014
language eng
recordid cdi_proquest_journals_2866046546
source DOAJ Directory of Open Access Journals
subjects Accuracy
Boxes
Image segmentation
Instance segmentation
Methods
Neural networks
Object recognition
Sensors
Training
title An Object Detection Method Using Probability Maps for Instance Segmentation to Mask Background
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A05%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Object%20Detection%20Method%20Using%20Probability%20Maps%20for%20Instance%20Segmentation%20to%20Mask%20Background&rft.jtitle=Journal%20of%20advanced%20computational%20intelligence%20and%20intelligent%20informatics&rft.au=Uchinoura,%20Shinji&rft.date=2023-09-01&rft.volume=27&rft.issue=5&rft.spage=886&rft.epage=895&rft.pages=886-895&rft.issn=1343-0130&rft.eissn=1883-8014&rft_id=info:doi/10.20965/jaciii.2023.p0886&rft_dat=%3Cproquest_cross%3E2866046546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866046546&rft_id=info:pmid/&rfr_iscdi=true