Two-dimensional (2D) layered double metal cyanides as alternative catalysts for CO2/propylene oxide copolymerization
Although zinc–cobalt double metal cyanide (DMC) complex is a popular catalyst for the copolymerization of CO2 and epoxides, it faces important challenges, such as poor CO2 uptake, high cyclic carbonate formation, low ability to produce high-molecular-weight polymers, and an induction period. Therefo...
Gespeichert in:
Veröffentlicht in: | Catalysis science & technology 2023-09, Vol.13 (18), p.5214-5226 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5226 |
---|---|
container_issue | 18 |
container_start_page | 5214 |
container_title | Catalysis science & technology |
container_volume | 13 |
creator | Penche, Guillermo González-Marcos, María P González-Velasco, Juan R Vos, Cyler W Kozak, Christopher M |
description | Although zinc–cobalt double metal cyanide (DMC) complex is a popular catalyst for the copolymerization of CO2 and epoxides, it faces important challenges, such as poor CO2 uptake, high cyclic carbonate formation, low ability to produce high-molecular-weight polymers, and an induction period. Therefore, the pursuit of alternative DMC complexes that can overcome these limitations has been a recurring research strategy in recent years. In this work, four novel 2D layered tetracyanonickelate complexes (M′[Ni(CN)4]; M′ = Ni2+, Co2+, Fe2+, Mn2+) were prepared, thoroughly characterized, and tested as catalysts for CO2 and propylene oxide copolymerization. These complexes yielded random polyethercarbonates (RPEC = 51–94%) with medium-to-low CO2 content (FCU = 13.1–42.4 mol%), moderate molecular weight (Mn = 11 000–36 500 g mol−1), and broad dispersity (Đ = 2.5–5.0). The Co–Ni DMC catalyst led to a 100% conversion of PO after 24 h, thus revealing itself as a possible alternative to the classic Zn–Co DMC compound. The catalytic performance of these compounds was compared in detail and their kinetics were assessed by in situ IR spectroscopy. While the Co–Ni DMC complex demonstrated remarkable selectivity, it requires further improvements in terms of activity and CO2 uptake to surpass its counterpart. Future research efforts should focus on driving these critical aspects. |
doi_str_mv | 10.1039/d3cy00753g |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2865737542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2865737542</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-d69c21ea231361d5b7cc08557071fa7d3aae28c93ec3b022b192d522acb82b453</originalsourceid><addsrcrecordid>eNo9Ts1KxDAYDKLgsu7FJwh40UPd5EvTtEdZf2FhL-t5SZOv0iVtapOq9ekNKA4DMzDMMIRccnbLmajWVpiZMSXF2wlZAMvzLFcFP_33UpyTVQhHlpBXnJWwIHH_6TPbdtiH1vfa0Wu4v6FOzziipdZPtUPaYUyJmXXfWgxUJ7qIY69j-4HU6JTOIQba-JFudrAeRj_MDnuk_is1qPGDd3OHY_udKr6_IGeNdgFXf7okr48P-81ztt09vWzuttkAvIqZLSoDHDUILgpuZa2MYaWUiineaGWF1gilqQQaUTOAmldgJYA2dQl1LsWSXP3upkPvE4Z4OPop3XbhAGUhlVAyB_ED2uleqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865737542</pqid></control><display><type>article</type><title>Two-dimensional (2D) layered double metal cyanides as alternative catalysts for CO2/propylene oxide copolymerization</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Penche, Guillermo ; González-Marcos, María P ; González-Velasco, Juan R ; Vos, Cyler W ; Kozak, Christopher M</creator><creatorcontrib>Penche, Guillermo ; González-Marcos, María P ; González-Velasco, Juan R ; Vos, Cyler W ; Kozak, Christopher M</creatorcontrib><description>Although zinc–cobalt double metal cyanide (DMC) complex is a popular catalyst for the copolymerization of CO2 and epoxides, it faces important challenges, such as poor CO2 uptake, high cyclic carbonate formation, low ability to produce high-molecular-weight polymers, and an induction period. Therefore, the pursuit of alternative DMC complexes that can overcome these limitations has been a recurring research strategy in recent years. In this work, four novel 2D layered tetracyanonickelate complexes (M′[Ni(CN)4]; M′ = Ni2+, Co2+, Fe2+, Mn2+) were prepared, thoroughly characterized, and tested as catalysts for CO2 and propylene oxide copolymerization. These complexes yielded random polyethercarbonates (RPEC = 51–94%) with medium-to-low CO2 content (FCU = 13.1–42.4 mol%), moderate molecular weight (Mn = 11 000–36 500 g mol−1), and broad dispersity (Đ = 2.5–5.0). The Co–Ni DMC catalyst led to a 100% conversion of PO after 24 h, thus revealing itself as a possible alternative to the classic Zn–Co DMC compound. The catalytic performance of these compounds was compared in detail and their kinetics were assessed by in situ IR spectroscopy. While the Co–Ni DMC complex demonstrated remarkable selectivity, it requires further improvements in terms of activity and CO2 uptake to surpass its counterpart. Future research efforts should focus on driving these critical aspects.</description><identifier>ISSN: 2044-4753</identifier><identifier>EISSN: 2044-4761</identifier><identifier>DOI: 10.1039/d3cy00753g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon dioxide ; Catalysts ; Cobalt ; Copolymerization ; Infrared spectroscopy ; Molecular weight ; Nickel ; Polyether carbonate ; Propylene oxide</subject><ispartof>Catalysis science & technology, 2023-09, Vol.13 (18), p.5214-5226</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Penche, Guillermo</creatorcontrib><creatorcontrib>González-Marcos, María P</creatorcontrib><creatorcontrib>González-Velasco, Juan R</creatorcontrib><creatorcontrib>Vos, Cyler W</creatorcontrib><creatorcontrib>Kozak, Christopher M</creatorcontrib><title>Two-dimensional (2D) layered double metal cyanides as alternative catalysts for CO2/propylene oxide copolymerization</title><title>Catalysis science & technology</title><description>Although zinc–cobalt double metal cyanide (DMC) complex is a popular catalyst for the copolymerization of CO2 and epoxides, it faces important challenges, such as poor CO2 uptake, high cyclic carbonate formation, low ability to produce high-molecular-weight polymers, and an induction period. Therefore, the pursuit of alternative DMC complexes that can overcome these limitations has been a recurring research strategy in recent years. In this work, four novel 2D layered tetracyanonickelate complexes (M′[Ni(CN)4]; M′ = Ni2+, Co2+, Fe2+, Mn2+) were prepared, thoroughly characterized, and tested as catalysts for CO2 and propylene oxide copolymerization. These complexes yielded random polyethercarbonates (RPEC = 51–94%) with medium-to-low CO2 content (FCU = 13.1–42.4 mol%), moderate molecular weight (Mn = 11 000–36 500 g mol−1), and broad dispersity (Đ = 2.5–5.0). The Co–Ni DMC catalyst led to a 100% conversion of PO after 24 h, thus revealing itself as a possible alternative to the classic Zn–Co DMC compound. The catalytic performance of these compounds was compared in detail and their kinetics were assessed by in situ IR spectroscopy. While the Co–Ni DMC complex demonstrated remarkable selectivity, it requires further improvements in terms of activity and CO2 uptake to surpass its counterpart. Future research efforts should focus on driving these critical aspects.</description><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Cobalt</subject><subject>Copolymerization</subject><subject>Infrared spectroscopy</subject><subject>Molecular weight</subject><subject>Nickel</subject><subject>Polyether carbonate</subject><subject>Propylene oxide</subject><issn>2044-4753</issn><issn>2044-4761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9Ts1KxDAYDKLgsu7FJwh40UPd5EvTtEdZf2FhL-t5SZOv0iVtapOq9ekNKA4DMzDMMIRccnbLmajWVpiZMSXF2wlZAMvzLFcFP_33UpyTVQhHlpBXnJWwIHH_6TPbdtiH1vfa0Wu4v6FOzziipdZPtUPaYUyJmXXfWgxUJ7qIY69j-4HU6JTOIQba-JFudrAeRj_MDnuk_is1qPGDd3OHY_udKr6_IGeNdgFXf7okr48P-81ztt09vWzuttkAvIqZLSoDHDUILgpuZa2MYaWUiineaGWF1gilqQQaUTOAmldgJYA2dQl1LsWSXP3upkPvE4Z4OPop3XbhAGUhlVAyB_ED2uleqQ</recordid><startdate>20230918</startdate><enddate>20230918</enddate><creator>Penche, Guillermo</creator><creator>González-Marcos, María P</creator><creator>González-Velasco, Juan R</creator><creator>Vos, Cyler W</creator><creator>Kozak, Christopher M</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20230918</creationdate><title>Two-dimensional (2D) layered double metal cyanides as alternative catalysts for CO2/propylene oxide copolymerization</title><author>Penche, Guillermo ; González-Marcos, María P ; González-Velasco, Juan R ; Vos, Cyler W ; Kozak, Christopher M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-d69c21ea231361d5b7cc08557071fa7d3aae28c93ec3b022b192d522acb82b453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Cobalt</topic><topic>Copolymerization</topic><topic>Infrared spectroscopy</topic><topic>Molecular weight</topic><topic>Nickel</topic><topic>Polyether carbonate</topic><topic>Propylene oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Penche, Guillermo</creatorcontrib><creatorcontrib>González-Marcos, María P</creatorcontrib><creatorcontrib>González-Velasco, Juan R</creatorcontrib><creatorcontrib>Vos, Cyler W</creatorcontrib><creatorcontrib>Kozak, Christopher M</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Catalysis science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Penche, Guillermo</au><au>González-Marcos, María P</au><au>González-Velasco, Juan R</au><au>Vos, Cyler W</au><au>Kozak, Christopher M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-dimensional (2D) layered double metal cyanides as alternative catalysts for CO2/propylene oxide copolymerization</atitle><jtitle>Catalysis science & technology</jtitle><date>2023-09-18</date><risdate>2023</risdate><volume>13</volume><issue>18</issue><spage>5214</spage><epage>5226</epage><pages>5214-5226</pages><issn>2044-4753</issn><eissn>2044-4761</eissn><abstract>Although zinc–cobalt double metal cyanide (DMC) complex is a popular catalyst for the copolymerization of CO2 and epoxides, it faces important challenges, such as poor CO2 uptake, high cyclic carbonate formation, low ability to produce high-molecular-weight polymers, and an induction period. Therefore, the pursuit of alternative DMC complexes that can overcome these limitations has been a recurring research strategy in recent years. In this work, four novel 2D layered tetracyanonickelate complexes (M′[Ni(CN)4]; M′ = Ni2+, Co2+, Fe2+, Mn2+) were prepared, thoroughly characterized, and tested as catalysts for CO2 and propylene oxide copolymerization. These complexes yielded random polyethercarbonates (RPEC = 51–94%) with medium-to-low CO2 content (FCU = 13.1–42.4 mol%), moderate molecular weight (Mn = 11 000–36 500 g mol−1), and broad dispersity (Đ = 2.5–5.0). The Co–Ni DMC catalyst led to a 100% conversion of PO after 24 h, thus revealing itself as a possible alternative to the classic Zn–Co DMC compound. The catalytic performance of these compounds was compared in detail and their kinetics were assessed by in situ IR spectroscopy. While the Co–Ni DMC complex demonstrated remarkable selectivity, it requires further improvements in terms of activity and CO2 uptake to surpass its counterpart. Future research efforts should focus on driving these critical aspects.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3cy00753g</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2044-4753 |
ispartof | Catalysis science & technology, 2023-09, Vol.13 (18), p.5214-5226 |
issn | 2044-4753 2044-4761 |
language | eng |
recordid | cdi_proquest_journals_2865737542 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Carbon dioxide Catalysts Cobalt Copolymerization Infrared spectroscopy Molecular weight Nickel Polyether carbonate Propylene oxide |
title | Two-dimensional (2D) layered double metal cyanides as alternative catalysts for CO2/propylene oxide copolymerization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A44%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-dimensional%20(2D)%20layered%20double%20metal%20cyanides%20as%20alternative%20catalysts%20for%20CO2/propylene%20oxide%20copolymerization&rft.jtitle=Catalysis%20science%20&%20technology&rft.au=Penche,%20Guillermo&rft.date=2023-09-18&rft.volume=13&rft.issue=18&rft.spage=5214&rft.epage=5226&rft.pages=5214-5226&rft.issn=2044-4753&rft.eissn=2044-4761&rft_id=info:doi/10.1039/d3cy00753g&rft_dat=%3Cproquest%3E2865737542%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865737542&rft_id=info:pmid/&rfr_iscdi=true |