Organic additive for the selective C2-product formation on Cu(100): a density functional theory mechanistic study
Electrochemical CO2 reduction is a promising approach to increase the chemical feedstock of energetically valuable products, especially ethylene and ethanol. In this regard, Cu catalysts are promising, but they suffer from poor intermediate adsorption. Polymer/organic additives can be utilized to tu...
Gespeichert in:
Veröffentlicht in: | Catalysis science & technology 2023-09, Vol.13 (18), p.5365-5373 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5373 |
---|---|
container_issue | 18 |
container_start_page | 5365 |
container_title | Catalysis science & technology |
container_volume | 13 |
creator | Das, Amitabha Mandal, Shyama Charan Pathak, Biswarup |
description | Electrochemical CO2 reduction is a promising approach to increase the chemical feedstock of energetically valuable products, especially ethylene and ethanol. In this regard, Cu catalysts are promising, but they suffer from poor intermediate adsorption. Polymer/organic additives can be utilized to tune the active center of Cu catalysts. DFT calculations have been performed considering urea and formamide modified Cu(100) surfaces to produce C2 products and the results are compared with the pure Cu(100) surface. Activation barrier analysis and reaction free energy changes determine the plausible reaction mechanism. The changes in the electronic properties of Cu(100) in the presence of formamide and urea are emphasized. The role of the hydrogen bonding interaction in the reaction free energy change and activation barriers is highlighted. Further, the role of carbonyl and –NH2 groups of the additives is studied. Overall, this work signifies the importance of acidic protons in improving the catalytic activity toward CO2 conversion to C2 products. |
doi_str_mv | 10.1039/d3cy00857f |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2865736386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2865736386</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-44d744ff92e40025a62d6a53fd8b6b74c5c171037deb327a2fdea845116177bd3</originalsourceid><addsrcrecordid>eNo9T01LAzEUDKJgqb34CwJe9LCa72S9yWJVKPSi55LNS-yW7W67yQr7701VfDx4wwzMzEPompJ7Snj5ANxNhBipwxmaMSJEIbSi5_9Y8ku0iHFH8oiSEsNm6LgePm3XOGwBmtR8eRz6Aaetx9G33v0wFSsOQw-jSydxb1PTdzhvNd5SQu4escXgu9ikCYexcyfZtiePfpjw3rttDogpZ8Q0wnSFLoJto1_83Tn6WD6_V6_Fav3yVj2tigM1PBVCgBYihJJ5QQiTVjFQVvIApla1Fk46qvPbGnzNmbYsgLdGSEoV1boGPkc3v765-3H0MW12_TjkZnHDjJKaK24U_wbe5lxp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865736386</pqid></control><display><type>article</type><title>Organic additive for the selective C2-product formation on Cu(100): a density functional theory mechanistic study</title><source>Royal Society Of Chemistry Journals</source><creator>Das, Amitabha ; Mandal, Shyama Charan ; Pathak, Biswarup</creator><creatorcontrib>Das, Amitabha ; Mandal, Shyama Charan ; Pathak, Biswarup</creatorcontrib><description>Electrochemical CO2 reduction is a promising approach to increase the chemical feedstock of energetically valuable products, especially ethylene and ethanol. In this regard, Cu catalysts are promising, but they suffer from poor intermediate adsorption. Polymer/organic additives can be utilized to tune the active center of Cu catalysts. DFT calculations have been performed considering urea and formamide modified Cu(100) surfaces to produce C2 products and the results are compared with the pure Cu(100) surface. Activation barrier analysis and reaction free energy changes determine the plausible reaction mechanism. The changes in the electronic properties of Cu(100) in the presence of formamide and urea are emphasized. The role of the hydrogen bonding interaction in the reaction free energy change and activation barriers is highlighted. Further, the role of carbonyl and –NH2 groups of the additives is studied. Overall, this work signifies the importance of acidic protons in improving the catalytic activity toward CO2 conversion to C2 products.</description><identifier>ISSN: 2044-4753</identifier><identifier>EISSN: 2044-4761</identifier><identifier>DOI: 10.1039/d3cy00857f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Activation energy ; Additives ; Carbon dioxide ; Carbonyls ; Catalysts ; Catalytic activity ; Catalytic converters ; Density functional theory ; Ethanol ; Free energy ; Hydrogen bonding ; Reaction mechanisms ; Ureas</subject><ispartof>Catalysis science & technology, 2023-09, Vol.13 (18), p.5365-5373</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Das, Amitabha</creatorcontrib><creatorcontrib>Mandal, Shyama Charan</creatorcontrib><creatorcontrib>Pathak, Biswarup</creatorcontrib><title>Organic additive for the selective C2-product formation on Cu(100): a density functional theory mechanistic study</title><title>Catalysis science & technology</title><description>Electrochemical CO2 reduction is a promising approach to increase the chemical feedstock of energetically valuable products, especially ethylene and ethanol. In this regard, Cu catalysts are promising, but they suffer from poor intermediate adsorption. Polymer/organic additives can be utilized to tune the active center of Cu catalysts. DFT calculations have been performed considering urea and formamide modified Cu(100) surfaces to produce C2 products and the results are compared with the pure Cu(100) surface. Activation barrier analysis and reaction free energy changes determine the plausible reaction mechanism. The changes in the electronic properties of Cu(100) in the presence of formamide and urea are emphasized. The role of the hydrogen bonding interaction in the reaction free energy change and activation barriers is highlighted. Further, the role of carbonyl and –NH2 groups of the additives is studied. Overall, this work signifies the importance of acidic protons in improving the catalytic activity toward CO2 conversion to C2 products.</description><subject>Activation energy</subject><subject>Additives</subject><subject>Carbon dioxide</subject><subject>Carbonyls</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Catalytic converters</subject><subject>Density functional theory</subject><subject>Ethanol</subject><subject>Free energy</subject><subject>Hydrogen bonding</subject><subject>Reaction mechanisms</subject><subject>Ureas</subject><issn>2044-4753</issn><issn>2044-4761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9T01LAzEUDKJgqb34CwJe9LCa72S9yWJVKPSi55LNS-yW7W67yQr7701VfDx4wwzMzEPompJ7Snj5ANxNhBipwxmaMSJEIbSi5_9Y8ku0iHFH8oiSEsNm6LgePm3XOGwBmtR8eRz6Aaetx9G33v0wFSsOQw-jSydxb1PTdzhvNd5SQu4escXgu9ikCYexcyfZtiePfpjw3rttDogpZ8Q0wnSFLoJto1_83Tn6WD6_V6_Fav3yVj2tigM1PBVCgBYihJJ5QQiTVjFQVvIApla1Fk46qvPbGnzNmbYsgLdGSEoV1boGPkc3v765-3H0MW12_TjkZnHDjJKaK24U_wbe5lxp</recordid><startdate>20230918</startdate><enddate>20230918</enddate><creator>Das, Amitabha</creator><creator>Mandal, Shyama Charan</creator><creator>Pathak, Biswarup</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20230918</creationdate><title>Organic additive for the selective C2-product formation on Cu(100): a density functional theory mechanistic study</title><author>Das, Amitabha ; Mandal, Shyama Charan ; Pathak, Biswarup</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-44d744ff92e40025a62d6a53fd8b6b74c5c171037deb327a2fdea845116177bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Activation energy</topic><topic>Additives</topic><topic>Carbon dioxide</topic><topic>Carbonyls</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Catalytic converters</topic><topic>Density functional theory</topic><topic>Ethanol</topic><topic>Free energy</topic><topic>Hydrogen bonding</topic><topic>Reaction mechanisms</topic><topic>Ureas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Amitabha</creatorcontrib><creatorcontrib>Mandal, Shyama Charan</creatorcontrib><creatorcontrib>Pathak, Biswarup</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Catalysis science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Amitabha</au><au>Mandal, Shyama Charan</au><au>Pathak, Biswarup</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic additive for the selective C2-product formation on Cu(100): a density functional theory mechanistic study</atitle><jtitle>Catalysis science & technology</jtitle><date>2023-09-18</date><risdate>2023</risdate><volume>13</volume><issue>18</issue><spage>5365</spage><epage>5373</epage><pages>5365-5373</pages><issn>2044-4753</issn><eissn>2044-4761</eissn><abstract>Electrochemical CO2 reduction is a promising approach to increase the chemical feedstock of energetically valuable products, especially ethylene and ethanol. In this regard, Cu catalysts are promising, but they suffer from poor intermediate adsorption. Polymer/organic additives can be utilized to tune the active center of Cu catalysts. DFT calculations have been performed considering urea and formamide modified Cu(100) surfaces to produce C2 products and the results are compared with the pure Cu(100) surface. Activation barrier analysis and reaction free energy changes determine the plausible reaction mechanism. The changes in the electronic properties of Cu(100) in the presence of formamide and urea are emphasized. The role of the hydrogen bonding interaction in the reaction free energy change and activation barriers is highlighted. Further, the role of carbonyl and –NH2 groups of the additives is studied. Overall, this work signifies the importance of acidic protons in improving the catalytic activity toward CO2 conversion to C2 products.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3cy00857f</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2044-4753 |
ispartof | Catalysis science & technology, 2023-09, Vol.13 (18), p.5365-5373 |
issn | 2044-4753 2044-4761 |
language | eng |
recordid | cdi_proquest_journals_2865736386 |
source | Royal Society Of Chemistry Journals |
subjects | Activation energy Additives Carbon dioxide Carbonyls Catalysts Catalytic activity Catalytic converters Density functional theory Ethanol Free energy Hydrogen bonding Reaction mechanisms Ureas |
title | Organic additive for the selective C2-product formation on Cu(100): a density functional theory mechanistic study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A17%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%20additive%20for%20the%20selective%20C2-product%20formation%20on%20Cu(100):%20a%20density%20functional%20theory%20mechanistic%20study&rft.jtitle=Catalysis%20science%20&%20technology&rft.au=Das,%20Amitabha&rft.date=2023-09-18&rft.volume=13&rft.issue=18&rft.spage=5365&rft.epage=5373&rft.pages=5365-5373&rft.issn=2044-4753&rft.eissn=2044-4761&rft_id=info:doi/10.1039/d3cy00857f&rft_dat=%3Cproquest%3E2865736386%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865736386&rft_id=info:pmid/&rfr_iscdi=true |