Lagrangian configurations and Hamiltonian maps
We study configurations of disjoint Lagrangian submanifolds in certain low-dimensional symplectic manifolds from the perspective of the geometry of Hamiltonian maps. We detect infinite-dimensional flats in the Hamiltonian group of the two-sphere equipped with Hofer's metric, prove constraints o...
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2023-12, Vol.159 (12), p.2483-2520 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2520 |
---|---|
container_issue | 12 |
container_start_page | 2483 |
container_title | Compositio mathematica |
container_volume | 159 |
creator | Polterovich, Leonid Shelukhin, Egor |
description | We study configurations of disjoint Lagrangian submanifolds in certain low-dimensional symplectic manifolds from the perspective of the geometry of Hamiltonian maps. We detect infinite-dimensional flats in the Hamiltonian group of the two-sphere equipped with Hofer's metric, prove constraints on Lagrangian packing, find instances of Lagrangian Poincaré recurrence, and present a new hierarchy of normal subgroups of area-preserving homeomorphisms of the two-sphere. The technology involves Lagrangian spectral invariants with Hamiltonian term in symmetric product orbifolds. |
doi_str_mv | 10.1112/S0010437X23007455 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2865731701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0010437X23007455</cupid><sourcerecordid>2865731701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-1d571b3090f3f1f3d61cea2a2f362265de13d1ffd54b7533adc4f2884e2a27653</originalsourceid><addsrcrecordid>eNp1kEFLw0AQhRdRsFZ_gLeC59SZnexuPEpRWyh4UMFbmGZ3Q0qzqbvpwX9vQgsexNMc3ve9gSfELcIcEeX9GwBCTuZTEoDJlToTE1QGMlXk-lxMxjgb80txldIWAGQhi4mYr7mOHOqGw6zqgm_qQ-S-6UKacbCzJbfNru_CGLe8T9fiwvMuuZvTnYqP56f3xTJbv76sFo_rrCINfYZWGdwQPIAnj56sxsqxZOlJS6mVdUgWvbcq3xhFxLbKvSyK3A2M0Yqm4u7Yu4_d18Glvtx2hxiGl6UstDKEBnCg8EhVsUspOl_uY9Ny_C4RynGW8s8sg0Mnh9tNbGztfqv_t34AivpjHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865731701</pqid></control><display><type>article</type><title>Lagrangian configurations and Hamiltonian maps</title><source>Cambridge University Press Journals Complete</source><creator>Polterovich, Leonid ; Shelukhin, Egor</creator><creatorcontrib>Polterovich, Leonid ; Shelukhin, Egor</creatorcontrib><description>We study configurations of disjoint Lagrangian submanifolds in certain low-dimensional symplectic manifolds from the perspective of the geometry of Hamiltonian maps. We detect infinite-dimensional flats in the Hamiltonian group of the two-sphere equipped with Hofer's metric, prove constraints on Lagrangian packing, find instances of Lagrangian Poincaré recurrence, and present a new hierarchy of normal subgroups of area-preserving homeomorphisms of the two-sphere. The technology involves Lagrangian spectral invariants with Hamiltonian term in symmetric product orbifolds.</description><identifier>ISSN: 0010-437X</identifier><identifier>EISSN: 1570-5846</identifier><identifier>DOI: 10.1112/S0010437X23007455</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><subject>Configurations ; Geometry ; Hamiltonian functions ; Manifolds (mathematics) ; Subgroups ; Topology</subject><ispartof>Compositio mathematica, 2023-12, Vol.159 (12), p.2483-2520</ispartof><rights>2023 The Author(s)</rights><rights>2023 The Author(s). This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Compositio Mathematica is © Foundation Compositio Mathematica. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-1d571b3090f3f1f3d61cea2a2f362265de13d1ffd54b7533adc4f2884e2a27653</citedby><cites>FETCH-LOGICAL-c360t-1d571b3090f3f1f3d61cea2a2f362265de13d1ffd54b7533adc4f2884e2a27653</cites><orcidid>0000-0001-8092-5668 ; 0000-0002-4516-4047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0010437X23007455/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,778,782,27907,27908,55611</link.rule.ids></links><search><creatorcontrib>Polterovich, Leonid</creatorcontrib><creatorcontrib>Shelukhin, Egor</creatorcontrib><title>Lagrangian configurations and Hamiltonian maps</title><title>Compositio mathematica</title><addtitle>Compositio Math</addtitle><description>We study configurations of disjoint Lagrangian submanifolds in certain low-dimensional symplectic manifolds from the perspective of the geometry of Hamiltonian maps. We detect infinite-dimensional flats in the Hamiltonian group of the two-sphere equipped with Hofer's metric, prove constraints on Lagrangian packing, find instances of Lagrangian Poincaré recurrence, and present a new hierarchy of normal subgroups of area-preserving homeomorphisms of the two-sphere. The technology involves Lagrangian spectral invariants with Hamiltonian term in symmetric product orbifolds.</description><subject>Configurations</subject><subject>Geometry</subject><subject>Hamiltonian functions</subject><subject>Manifolds (mathematics)</subject><subject>Subgroups</subject><subject>Topology</subject><issn>0010-437X</issn><issn>1570-5846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEFLw0AQhRdRsFZ_gLeC59SZnexuPEpRWyh4UMFbmGZ3Q0qzqbvpwX9vQgsexNMc3ve9gSfELcIcEeX9GwBCTuZTEoDJlToTE1QGMlXk-lxMxjgb80txldIWAGQhi4mYr7mOHOqGw6zqgm_qQ-S-6UKacbCzJbfNru_CGLe8T9fiwvMuuZvTnYqP56f3xTJbv76sFo_rrCINfYZWGdwQPIAnj56sxsqxZOlJS6mVdUgWvbcq3xhFxLbKvSyK3A2M0Yqm4u7Yu4_d18Glvtx2hxiGl6UstDKEBnCg8EhVsUspOl_uY9Ny_C4RynGW8s8sg0Mnh9tNbGztfqv_t34AivpjHQ</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Polterovich, Leonid</creator><creator>Shelukhin, Egor</creator><general>London Mathematical Society</general><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8092-5668</orcidid><orcidid>https://orcid.org/0000-0002-4516-4047</orcidid></search><sort><creationdate>20231201</creationdate><title>Lagrangian configurations and Hamiltonian maps</title><author>Polterovich, Leonid ; Shelukhin, Egor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-1d571b3090f3f1f3d61cea2a2f362265de13d1ffd54b7533adc4f2884e2a27653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Configurations</topic><topic>Geometry</topic><topic>Hamiltonian functions</topic><topic>Manifolds (mathematics)</topic><topic>Subgroups</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polterovich, Leonid</creatorcontrib><creatorcontrib>Shelukhin, Egor</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Compositio mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polterovich, Leonid</au><au>Shelukhin, Egor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lagrangian configurations and Hamiltonian maps</atitle><jtitle>Compositio mathematica</jtitle><addtitle>Compositio Math</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>159</volume><issue>12</issue><spage>2483</spage><epage>2520</epage><pages>2483-2520</pages><issn>0010-437X</issn><eissn>1570-5846</eissn><abstract>We study configurations of disjoint Lagrangian submanifolds in certain low-dimensional symplectic manifolds from the perspective of the geometry of Hamiltonian maps. We detect infinite-dimensional flats in the Hamiltonian group of the two-sphere equipped with Hofer's metric, prove constraints on Lagrangian packing, find instances of Lagrangian Poincaré recurrence, and present a new hierarchy of normal subgroups of area-preserving homeomorphisms of the two-sphere. The technology involves Lagrangian spectral invariants with Hamiltonian term in symmetric product orbifolds.</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S0010437X23007455</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0001-8092-5668</orcidid><orcidid>https://orcid.org/0000-0002-4516-4047</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-437X |
ispartof | Compositio mathematica, 2023-12, Vol.159 (12), p.2483-2520 |
issn | 0010-437X 1570-5846 |
language | eng |
recordid | cdi_proquest_journals_2865731701 |
source | Cambridge University Press Journals Complete |
subjects | Configurations Geometry Hamiltonian functions Manifolds (mathematics) Subgroups Topology |
title | Lagrangian configurations and Hamiltonian maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lagrangian%20configurations%20and%20Hamiltonian%20maps&rft.jtitle=Compositio%20mathematica&rft.au=Polterovich,%20Leonid&rft.date=2023-12-01&rft.volume=159&rft.issue=12&rft.spage=2483&rft.epage=2520&rft.pages=2483-2520&rft.issn=0010-437X&rft.eissn=1570-5846&rft_id=info:doi/10.1112/S0010437X23007455&rft_dat=%3Cproquest_cross%3E2865731701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865731701&rft_id=info:pmid/&rft_cupid=10_1112_S0010437X23007455&rfr_iscdi=true |