Endpoint Entropy Fefferman–Stein Bounds for Commutators
In this paper endpoint entropy Fefferman–Stein bounds for Calderón–Zygmund operators introduced by Rahm (J Math Anal Appl 504(1):Paper No. 125372, 2021) are extended to iterated Coifman–Rochberg–Weiss commutators.
Gespeichert in:
Veröffentlicht in: | The Journal of fourier analysis and applications 2023-10, Vol.29 (5), Article 59 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | The Journal of fourier analysis and applications |
container_volume | 29 |
creator | Muller, Pamela A. Rivera-Ríos, Israel P. |
description | In this paper endpoint entropy Fefferman–Stein bounds for Calderón–Zygmund operators introduced by Rahm (J Math Anal Appl 504(1):Paper No. 125372, 2021) are extended to iterated Coifman–Rochberg–Weiss commutators. |
doi_str_mv | 10.1007/s00041-023-10040-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2865324329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A765493336</galeid><sourcerecordid>A765493336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-2f72c0be50dd6c05c6e39ef3062dab0d837e3c4858c9aaa919c6339a778138643</originalsourceid><addsrcrecordid>eNp9UMtOwzAQjBBIlMIPcIrEOWXtjZ34WKrykCpxAM6W69hVqsYOdnrojX_gD_kSXILEDe1hZ1czu6PJsmsCMwJQ3UYAKEkBFIs0l1CUJ9mEMCQFqxk5TRi4SJiL8-wixi0AJVjhJBNL1_S-dUO-dEPw_SG_N9aa0Cn39fH5MpjW5Xd-75qYWx_yhe-6_aAGH-JldmbVLpqr3z7N3u6Xr4vHYvX88LSYrwqNDIeC2opqWBsGTcM1MM0NCmMROG3UGpoaK4O6rFmthVJKEKE5olBVVROseYnT7Ga82wf_vjdxkFu_Dy69lLTmDGmJVCTWbGRt1M7I1lk_BKVTNaZrtXfGtmk_rzgrBSLyJKCjQAcfYzBW9qHtVDhIAvKYqRwzlSlT-ZOpPHrBURQT2W1M-PPyj-obsL545g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865324329</pqid></control><display><type>article</type><title>Endpoint Entropy Fefferman–Stein Bounds for Commutators</title><source>SpringerLink Journals - AutoHoldings</source><creator>Muller, Pamela A. ; Rivera-Ríos, Israel P.</creator><creatorcontrib>Muller, Pamela A. ; Rivera-Ríos, Israel P.</creatorcontrib><description>In this paper endpoint entropy Fefferman–Stein bounds for Calderón–Zygmund operators introduced by Rahm (J Math Anal Appl 504(1):Paper No. 125372, 2021) are extended to iterated Coifman–Rochberg–Weiss commutators.</description><identifier>ISSN: 1069-5869</identifier><identifier>EISSN: 1531-5851</identifier><identifier>DOI: 10.1007/s00041-023-10040-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Approximations and Expansions ; Commutators ; Entropy ; Fourier Analysis ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Signal,Image and Speech Processing</subject><ispartof>The Journal of fourier analysis and applications, 2023-10, Vol.29 (5), Article 59</ispartof><rights>The Author(s) 2023</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c353t-2f72c0be50dd6c05c6e39ef3062dab0d837e3c4858c9aaa919c6339a778138643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00041-023-10040-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00041-023-10040-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Muller, Pamela A.</creatorcontrib><creatorcontrib>Rivera-Ríos, Israel P.</creatorcontrib><title>Endpoint Entropy Fefferman–Stein Bounds for Commutators</title><title>The Journal of fourier analysis and applications</title><addtitle>J Fourier Anal Appl</addtitle><description>In this paper endpoint entropy Fefferman–Stein bounds for Calderón–Zygmund operators introduced by Rahm (J Math Anal Appl 504(1):Paper No. 125372, 2021) are extended to iterated Coifman–Rochberg–Weiss commutators.</description><subject>Abstract Harmonic Analysis</subject><subject>Approximations and Expansions</subject><subject>Commutators</subject><subject>Entropy</subject><subject>Fourier Analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Signal,Image and Speech Processing</subject><issn>1069-5869</issn><issn>1531-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UMtOwzAQjBBIlMIPcIrEOWXtjZ34WKrykCpxAM6W69hVqsYOdnrojX_gD_kSXILEDe1hZ1czu6PJsmsCMwJQ3UYAKEkBFIs0l1CUJ9mEMCQFqxk5TRi4SJiL8-wixi0AJVjhJBNL1_S-dUO-dEPw_SG_N9aa0Cn39fH5MpjW5Xd-75qYWx_yhe-6_aAGH-JldmbVLpqr3z7N3u6Xr4vHYvX88LSYrwqNDIeC2opqWBsGTcM1MM0NCmMROG3UGpoaK4O6rFmthVJKEKE5olBVVROseYnT7Ga82wf_vjdxkFu_Dy69lLTmDGmJVCTWbGRt1M7I1lk_BKVTNaZrtXfGtmk_rzgrBSLyJKCjQAcfYzBW9qHtVDhIAvKYqRwzlSlT-ZOpPHrBURQT2W1M-PPyj-obsL545g</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Muller, Pamela A.</creator><creator>Rivera-Ríos, Israel P.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>Endpoint Entropy Fefferman–Stein Bounds for Commutators</title><author>Muller, Pamela A. ; Rivera-Ríos, Israel P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-2f72c0be50dd6c05c6e39ef3062dab0d837e3c4858c9aaa919c6339a778138643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Approximations and Expansions</topic><topic>Commutators</topic><topic>Entropy</topic><topic>Fourier Analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muller, Pamela A.</creatorcontrib><creatorcontrib>Rivera-Ríos, Israel P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>The Journal of fourier analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muller, Pamela A.</au><au>Rivera-Ríos, Israel P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endpoint Entropy Fefferman–Stein Bounds for Commutators</atitle><jtitle>The Journal of fourier analysis and applications</jtitle><stitle>J Fourier Anal Appl</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>29</volume><issue>5</issue><artnum>59</artnum><issn>1069-5869</issn><eissn>1531-5851</eissn><abstract>In this paper endpoint entropy Fefferman–Stein bounds for Calderón–Zygmund operators introduced by Rahm (J Math Anal Appl 504(1):Paper No. 125372, 2021) are extended to iterated Coifman–Rochberg–Weiss commutators.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00041-023-10040-4</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1069-5869 |
ispartof | The Journal of fourier analysis and applications, 2023-10, Vol.29 (5), Article 59 |
issn | 1069-5869 1531-5851 |
language | eng |
recordid | cdi_proquest_journals_2865324329 |
source | SpringerLink Journals - AutoHoldings |
subjects | Abstract Harmonic Analysis Approximations and Expansions Commutators Entropy Fourier Analysis Mathematical Methods in Physics Mathematics Mathematics and Statistics Partial Differential Equations Signal,Image and Speech Processing |
title | Endpoint Entropy Fefferman–Stein Bounds for Commutators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A40%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endpoint%20Entropy%20Fefferman%E2%80%93Stein%20Bounds%20for%20Commutators&rft.jtitle=The%20Journal%20of%20fourier%20analysis%20and%20applications&rft.au=Muller,%20Pamela%20A.&rft.date=2023-10-01&rft.volume=29&rft.issue=5&rft.artnum=59&rft.issn=1069-5869&rft.eissn=1531-5851&rft_id=info:doi/10.1007/s00041-023-10040-4&rft_dat=%3Cgale_proqu%3EA765493336%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865324329&rft_id=info:pmid/&rft_galeid=A765493336&rfr_iscdi=true |