Endpoint Entropy Fefferman–Stein Bounds for Commutators

In this paper endpoint entropy Fefferman–Stein bounds for Calderón–Zygmund operators introduced by Rahm (J Math Anal Appl 504(1):Paper No. 125372, 2021) are extended to iterated Coifman–Rochberg–Weiss commutators.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2023-10, Vol.29 (5), Article 59
Hauptverfasser: Muller, Pamela A., Rivera-Ríos, Israel P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title The Journal of fourier analysis and applications
container_volume 29
creator Muller, Pamela A.
Rivera-Ríos, Israel P.
description In this paper endpoint entropy Fefferman–Stein bounds for Calderón–Zygmund operators introduced by Rahm (J Math Anal Appl 504(1):Paper No. 125372, 2021) are extended to iterated Coifman–Rochberg–Weiss commutators.
doi_str_mv 10.1007/s00041-023-10040-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2865324329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A765493336</galeid><sourcerecordid>A765493336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-2f72c0be50dd6c05c6e39ef3062dab0d837e3c4858c9aaa919c6339a778138643</originalsourceid><addsrcrecordid>eNp9UMtOwzAQjBBIlMIPcIrEOWXtjZ34WKrykCpxAM6W69hVqsYOdnrojX_gD_kSXILEDe1hZ1czu6PJsmsCMwJQ3UYAKEkBFIs0l1CUJ9mEMCQFqxk5TRi4SJiL8-wixi0AJVjhJBNL1_S-dUO-dEPw_SG_N9aa0Cn39fH5MpjW5Xd-75qYWx_yhe-6_aAGH-JldmbVLpqr3z7N3u6Xr4vHYvX88LSYrwqNDIeC2opqWBsGTcM1MM0NCmMROG3UGpoaK4O6rFmthVJKEKE5olBVVROseYnT7Ga82wf_vjdxkFu_Dy69lLTmDGmJVCTWbGRt1M7I1lk_BKVTNaZrtXfGtmk_rzgrBSLyJKCjQAcfYzBW9qHtVDhIAvKYqRwzlSlT-ZOpPHrBURQT2W1M-PPyj-obsL545g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865324329</pqid></control><display><type>article</type><title>Endpoint Entropy Fefferman–Stein Bounds for Commutators</title><source>SpringerLink Journals - AutoHoldings</source><creator>Muller, Pamela A. ; Rivera-Ríos, Israel P.</creator><creatorcontrib>Muller, Pamela A. ; Rivera-Ríos, Israel P.</creatorcontrib><description>In this paper endpoint entropy Fefferman–Stein bounds for Calderón–Zygmund operators introduced by Rahm (J Math Anal Appl 504(1):Paper No. 125372, 2021) are extended to iterated Coifman–Rochberg–Weiss commutators.</description><identifier>ISSN: 1069-5869</identifier><identifier>EISSN: 1531-5851</identifier><identifier>DOI: 10.1007/s00041-023-10040-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Approximations and Expansions ; Commutators ; Entropy ; Fourier Analysis ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Signal,Image and Speech Processing</subject><ispartof>The Journal of fourier analysis and applications, 2023-10, Vol.29 (5), Article 59</ispartof><rights>The Author(s) 2023</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c353t-2f72c0be50dd6c05c6e39ef3062dab0d837e3c4858c9aaa919c6339a778138643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00041-023-10040-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00041-023-10040-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Muller, Pamela A.</creatorcontrib><creatorcontrib>Rivera-Ríos, Israel P.</creatorcontrib><title>Endpoint Entropy Fefferman–Stein Bounds for Commutators</title><title>The Journal of fourier analysis and applications</title><addtitle>J Fourier Anal Appl</addtitle><description>In this paper endpoint entropy Fefferman–Stein bounds for Calderón–Zygmund operators introduced by Rahm (J Math Anal Appl 504(1):Paper No. 125372, 2021) are extended to iterated Coifman–Rochberg–Weiss commutators.</description><subject>Abstract Harmonic Analysis</subject><subject>Approximations and Expansions</subject><subject>Commutators</subject><subject>Entropy</subject><subject>Fourier Analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Signal,Image and Speech Processing</subject><issn>1069-5869</issn><issn>1531-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UMtOwzAQjBBIlMIPcIrEOWXtjZ34WKrykCpxAM6W69hVqsYOdnrojX_gD_kSXILEDe1hZ1czu6PJsmsCMwJQ3UYAKEkBFIs0l1CUJ9mEMCQFqxk5TRi4SJiL8-wixi0AJVjhJBNL1_S-dUO-dEPw_SG_N9aa0Cn39fH5MpjW5Xd-75qYWx_yhe-6_aAGH-JldmbVLpqr3z7N3u6Xr4vHYvX88LSYrwqNDIeC2opqWBsGTcM1MM0NCmMROG3UGpoaK4O6rFmthVJKEKE5olBVVROseYnT7Ga82wf_vjdxkFu_Dy69lLTmDGmJVCTWbGRt1M7I1lk_BKVTNaZrtXfGtmk_rzgrBSLyJKCjQAcfYzBW9qHtVDhIAvKYqRwzlSlT-ZOpPHrBURQT2W1M-PPyj-obsL545g</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Muller, Pamela A.</creator><creator>Rivera-Ríos, Israel P.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>Endpoint Entropy Fefferman–Stein Bounds for Commutators</title><author>Muller, Pamela A. ; Rivera-Ríos, Israel P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-2f72c0be50dd6c05c6e39ef3062dab0d837e3c4858c9aaa919c6339a778138643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Approximations and Expansions</topic><topic>Commutators</topic><topic>Entropy</topic><topic>Fourier Analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muller, Pamela A.</creatorcontrib><creatorcontrib>Rivera-Ríos, Israel P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>The Journal of fourier analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muller, Pamela A.</au><au>Rivera-Ríos, Israel P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endpoint Entropy Fefferman–Stein Bounds for Commutators</atitle><jtitle>The Journal of fourier analysis and applications</jtitle><stitle>J Fourier Anal Appl</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>29</volume><issue>5</issue><artnum>59</artnum><issn>1069-5869</issn><eissn>1531-5851</eissn><abstract>In this paper endpoint entropy Fefferman–Stein bounds for Calderón–Zygmund operators introduced by Rahm (J Math Anal Appl 504(1):Paper No. 125372, 2021) are extended to iterated Coifman–Rochberg–Weiss commutators.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00041-023-10040-4</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1069-5869
ispartof The Journal of fourier analysis and applications, 2023-10, Vol.29 (5), Article 59
issn 1069-5869
1531-5851
language eng
recordid cdi_proquest_journals_2865324329
source SpringerLink Journals - AutoHoldings
subjects Abstract Harmonic Analysis
Approximations and Expansions
Commutators
Entropy
Fourier Analysis
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Partial Differential Equations
Signal,Image and Speech Processing
title Endpoint Entropy Fefferman–Stein Bounds for Commutators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A40%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endpoint%20Entropy%20Fefferman%E2%80%93Stein%20Bounds%20for%20Commutators&rft.jtitle=The%20Journal%20of%20fourier%20analysis%20and%20applications&rft.au=Muller,%20Pamela%20A.&rft.date=2023-10-01&rft.volume=29&rft.issue=5&rft.artnum=59&rft.issn=1069-5869&rft.eissn=1531-5851&rft_id=info:doi/10.1007/s00041-023-10040-4&rft_dat=%3Cgale_proqu%3EA765493336%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865324329&rft_id=info:pmid/&rft_galeid=A765493336&rfr_iscdi=true