TMIF: transformer-based multi-modal interactive fusion for automatic rumor detection
The rapid development of social media platforms has made them one of the most important news sources. While it provides people with convenient real-time communication channels, fake news and rumors are also spread rapidly through social media platforms, misleading the public and even causing bad soc...
Gespeichert in:
Veröffentlicht in: | Multimedia systems 2023-10, Vol.29 (5), p.2979-2989 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2989 |
---|---|
container_issue | 5 |
container_start_page | 2979 |
container_title | Multimedia systems |
container_volume | 29 |
creator | Lv, Jiandong Wang, Xingang Shao, Cuiling |
description | The rapid development of social media platforms has made them one of the most important news sources. While it provides people with convenient real-time communication channels, fake news and rumors are also spread rapidly through social media platforms, misleading the public and even causing bad social impact. In view of the slow speed and poor consistency of artificial rumor detection, we propose an end-to-end automatic rumor detection model named TMIF, which is based on transformer to map multi-modal feature representations to the same data domain for fusion. It can capture the multi-level dependencies among multi-modal content while reducing the impact of multi-modal heterogeneity differences. We validated it on two multi-modal rumor detection datasets and proved the superior performance and early detection performance of the proposed model. |
doi_str_mv | 10.1007/s00530-022-00916-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2865324045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2865324045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8355b43a0ae08f69de2f4965be823b0c1bcc7af912ab2457a275b3bd9a8db37a3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9HJV5t6k8WPhRUv6zlM2lS6bJs1SQX_vdEK3jwNA8_7zvAQcsngmgFUNxFACaDAOQWoWUn1EVkwKThlWvNjsoBacirrkp-Ssxh3AKwqBSzIdvu8frgtUsAxdj4MLlCL0bXFMO1TTwff4r7ox-QCNqn_cEU3xd6PRWYLnJIfMPVNEaYh761LLkN-PCcnHe6ju_idS_L6cL9dPdHNy-N6dbehjWB1olooZaVAQAe6K-vW8S6_qKzTXFhomG2aCruacbRcqgp5paywbY26taJCsSRXc-8h-PfJxWR2fgpjPmm4LpXgEqTKFJ-pJvgYg-vMIfQDhk_DwHzbM7M9k-2ZH3tG55CYQzHD45sLf9X_pL4AzslzOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865324045</pqid></control><display><type>article</type><title>TMIF: transformer-based multi-modal interactive fusion for automatic rumor detection</title><source>Springer Nature - Complete Springer Journals</source><creator>Lv, Jiandong ; Wang, Xingang ; Shao, Cuiling</creator><creatorcontrib>Lv, Jiandong ; Wang, Xingang ; Shao, Cuiling</creatorcontrib><description>The rapid development of social media platforms has made them one of the most important news sources. While it provides people with convenient real-time communication channels, fake news and rumors are also spread rapidly through social media platforms, misleading the public and even causing bad social impact. In view of the slow speed and poor consistency of artificial rumor detection, we propose an end-to-end automatic rumor detection model named TMIF, which is based on transformer to map multi-modal feature representations to the same data domain for fusion. It can capture the multi-level dependencies among multi-modal content while reducing the impact of multi-modal heterogeneity differences. We validated it on two multi-modal rumor detection datasets and proved the superior performance and early detection performance of the proposed model.</description><identifier>ISSN: 0942-4962</identifier><identifier>EISSN: 1432-1882</identifier><identifier>DOI: 10.1007/s00530-022-00916-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computer Communication Networks ; Computer Graphics ; Computer Science ; Cryptology ; Data Storage Representation ; Digital media ; Few-shot Learning for Intelligent Multimedia Systems ; Heterogeneity ; Multimedia Information Systems ; News ; Operating Systems ; Social networks ; Special Issue Paper ; Transformers</subject><ispartof>Multimedia systems, 2023-10, Vol.29 (5), p.2979-2989</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8355b43a0ae08f69de2f4965be823b0c1bcc7af912ab2457a275b3bd9a8db37a3</citedby><cites>FETCH-LOGICAL-c319t-8355b43a0ae08f69de2f4965be823b0c1bcc7af912ab2457a275b3bd9a8db37a3</cites><orcidid>0000-0002-3949-5915</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00530-022-00916-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00530-022-00916-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lv, Jiandong</creatorcontrib><creatorcontrib>Wang, Xingang</creatorcontrib><creatorcontrib>Shao, Cuiling</creatorcontrib><title>TMIF: transformer-based multi-modal interactive fusion for automatic rumor detection</title><title>Multimedia systems</title><addtitle>Multimedia Systems</addtitle><description>The rapid development of social media platforms has made them one of the most important news sources. While it provides people with convenient real-time communication channels, fake news and rumors are also spread rapidly through social media platforms, misleading the public and even causing bad social impact. In view of the slow speed and poor consistency of artificial rumor detection, we propose an end-to-end automatic rumor detection model named TMIF, which is based on transformer to map multi-modal feature representations to the same data domain for fusion. It can capture the multi-level dependencies among multi-modal content while reducing the impact of multi-modal heterogeneity differences. We validated it on two multi-modal rumor detection datasets and proved the superior performance and early detection performance of the proposed model.</description><subject>Computer Communication Networks</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Data Storage Representation</subject><subject>Digital media</subject><subject>Few-shot Learning for Intelligent Multimedia Systems</subject><subject>Heterogeneity</subject><subject>Multimedia Information Systems</subject><subject>News</subject><subject>Operating Systems</subject><subject>Social networks</subject><subject>Special Issue Paper</subject><subject>Transformers</subject><issn>0942-4962</issn><issn>1432-1882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9HJV5t6k8WPhRUv6zlM2lS6bJs1SQX_vdEK3jwNA8_7zvAQcsngmgFUNxFACaDAOQWoWUn1EVkwKThlWvNjsoBacirrkp-Ssxh3AKwqBSzIdvu8frgtUsAxdj4MLlCL0bXFMO1TTwff4r7ox-QCNqn_cEU3xd6PRWYLnJIfMPVNEaYh761LLkN-PCcnHe6ju_idS_L6cL9dPdHNy-N6dbehjWB1olooZaVAQAe6K-vW8S6_qKzTXFhomG2aCruacbRcqgp5paywbY26taJCsSRXc-8h-PfJxWR2fgpjPmm4LpXgEqTKFJ-pJvgYg-vMIfQDhk_DwHzbM7M9k-2ZH3tG55CYQzHD45sLf9X_pL4AzslzOw</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Lv, Jiandong</creator><creator>Wang, Xingang</creator><creator>Shao, Cuiling</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3949-5915</orcidid></search><sort><creationdate>20231001</creationdate><title>TMIF: transformer-based multi-modal interactive fusion for automatic rumor detection</title><author>Lv, Jiandong ; Wang, Xingang ; Shao, Cuiling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8355b43a0ae08f69de2f4965be823b0c1bcc7af912ab2457a275b3bd9a8db37a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer Communication Networks</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Data Storage Representation</topic><topic>Digital media</topic><topic>Few-shot Learning for Intelligent Multimedia Systems</topic><topic>Heterogeneity</topic><topic>Multimedia Information Systems</topic><topic>News</topic><topic>Operating Systems</topic><topic>Social networks</topic><topic>Special Issue Paper</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Jiandong</creatorcontrib><creatorcontrib>Wang, Xingang</creatorcontrib><creatorcontrib>Shao, Cuiling</creatorcontrib><collection>CrossRef</collection><jtitle>Multimedia systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Jiandong</au><au>Wang, Xingang</au><au>Shao, Cuiling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TMIF: transformer-based multi-modal interactive fusion for automatic rumor detection</atitle><jtitle>Multimedia systems</jtitle><stitle>Multimedia Systems</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>29</volume><issue>5</issue><spage>2979</spage><epage>2989</epage><pages>2979-2989</pages><issn>0942-4962</issn><eissn>1432-1882</eissn><abstract>The rapid development of social media platforms has made them one of the most important news sources. While it provides people with convenient real-time communication channels, fake news and rumors are also spread rapidly through social media platforms, misleading the public and even causing bad social impact. In view of the slow speed and poor consistency of artificial rumor detection, we propose an end-to-end automatic rumor detection model named TMIF, which is based on transformer to map multi-modal feature representations to the same data domain for fusion. It can capture the multi-level dependencies among multi-modal content while reducing the impact of multi-modal heterogeneity differences. We validated it on two multi-modal rumor detection datasets and proved the superior performance and early detection performance of the proposed model.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00530-022-00916-8</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3949-5915</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0942-4962 |
ispartof | Multimedia systems, 2023-10, Vol.29 (5), p.2979-2989 |
issn | 0942-4962 1432-1882 |
language | eng |
recordid | cdi_proquest_journals_2865324045 |
source | Springer Nature - Complete Springer Journals |
subjects | Computer Communication Networks Computer Graphics Computer Science Cryptology Data Storage Representation Digital media Few-shot Learning for Intelligent Multimedia Systems Heterogeneity Multimedia Information Systems News Operating Systems Social networks Special Issue Paper Transformers |
title | TMIF: transformer-based multi-modal interactive fusion for automatic rumor detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A07%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TMIF:%20transformer-based%20multi-modal%20interactive%20fusion%20for%20automatic%20rumor%20detection&rft.jtitle=Multimedia%20systems&rft.au=Lv,%20Jiandong&rft.date=2023-10-01&rft.volume=29&rft.issue=5&rft.spage=2979&rft.epage=2989&rft.pages=2979-2989&rft.issn=0942-4962&rft.eissn=1432-1882&rft_id=info:doi/10.1007/s00530-022-00916-8&rft_dat=%3Cproquest_cross%3E2865324045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865324045&rft_id=info:pmid/&rfr_iscdi=true |