Codec Data Augmentation for Time-domain Heart Sound Classification

Heart auscultations are a low-cost and effective way of detecting valvular heart diseases early, which can save lives. Nevertheless, it has been difficult to scale this screening method since the effectiveness of auscultations is dependent on the skill of doctors. As such, there has been increasing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-09
Hauptverfasser: Mishra, Ansh, Jia Qi Yip, Chng, Eng Siong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mishra, Ansh
Jia Qi Yip
Chng, Eng Siong
description Heart auscultations are a low-cost and effective way of detecting valvular heart diseases early, which can save lives. Nevertheless, it has been difficult to scale this screening method since the effectiveness of auscultations is dependent on the skill of doctors. As such, there has been increasing research interest in the automatic classification of heart sounds using deep learning algorithms. However, it is currently difficult to develop good heart sound classification models due to the limited data available for training. In this work, we propose a simple time domain approach, to the heart sound classification problem with a base classification error rate of 0.8 and show that augmentation of the data through codec simulation can improve the classification error rate to 0.2. With data augmentation, our approach outperforms the existing time-domain CNN-BiLSTM baseline model. Critically, our experiments show that codec data augmentation is effective in getting around the data limitation.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2865140063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2865140063</sourcerecordid><originalsourceid>FETCH-proquest_journals_28651400633</originalsourceid><addsrcrecordid>eNqNys0KgkAUQOEhCJLyHS60FsYZNbdlhfvcy8UZZUTn1vy8fxE9QKuzON-GJULKPKsLIXYs9X7mnIvqJMpSJuzSkNIDXDEgnOO0ahswGLIwkoPOrDpTtKKx0Gp0AR4UrYJmQe_NaIYvPbDtiIvX6a97drzfuqbNno5eUfvQzxSd_axe1FWZF5xXUv6n3nSeOVU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865140063</pqid></control><display><type>article</type><title>Codec Data Augmentation for Time-domain Heart Sound Classification</title><source>Free E- Journals</source><creator>Mishra, Ansh ; Jia Qi Yip ; Chng, Eng Siong</creator><creatorcontrib>Mishra, Ansh ; Jia Qi Yip ; Chng, Eng Siong</creatorcontrib><description>Heart auscultations are a low-cost and effective way of detecting valvular heart diseases early, which can save lives. Nevertheless, it has been difficult to scale this screening method since the effectiveness of auscultations is dependent on the skill of doctors. As such, there has been increasing research interest in the automatic classification of heart sounds using deep learning algorithms. However, it is currently difficult to develop good heart sound classification models due to the limited data available for training. In this work, we propose a simple time domain approach, to the heart sound classification problem with a base classification error rate of 0.8 and show that augmentation of the data through codec simulation can improve the classification error rate to 0.2. With data augmentation, our approach outperforms the existing time-domain CNN-BiLSTM baseline model. Critically, our experiments show that codec data augmentation is effective in getting around the data limitation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Classification ; Codec ; Data augmentation ; Heart diseases ; Machine learning ; Time domain analysis</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Mishra, Ansh</creatorcontrib><creatorcontrib>Jia Qi Yip</creatorcontrib><creatorcontrib>Chng, Eng Siong</creatorcontrib><title>Codec Data Augmentation for Time-domain Heart Sound Classification</title><title>arXiv.org</title><description>Heart auscultations are a low-cost and effective way of detecting valvular heart diseases early, which can save lives. Nevertheless, it has been difficult to scale this screening method since the effectiveness of auscultations is dependent on the skill of doctors. As such, there has been increasing research interest in the automatic classification of heart sounds using deep learning algorithms. However, it is currently difficult to develop good heart sound classification models due to the limited data available for training. In this work, we propose a simple time domain approach, to the heart sound classification problem with a base classification error rate of 0.8 and show that augmentation of the data through codec simulation can improve the classification error rate to 0.2. With data augmentation, our approach outperforms the existing time-domain CNN-BiLSTM baseline model. Critically, our experiments show that codec data augmentation is effective in getting around the data limitation.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Codec</subject><subject>Data augmentation</subject><subject>Heart diseases</subject><subject>Machine learning</subject><subject>Time domain analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNys0KgkAUQOEhCJLyHS60FsYZNbdlhfvcy8UZZUTn1vy8fxE9QKuzON-GJULKPKsLIXYs9X7mnIvqJMpSJuzSkNIDXDEgnOO0ahswGLIwkoPOrDpTtKKx0Gp0AR4UrYJmQe_NaIYvPbDtiIvX6a97drzfuqbNno5eUfvQzxSd_axe1FWZF5xXUv6n3nSeOVU</recordid><startdate>20230914</startdate><enddate>20230914</enddate><creator>Mishra, Ansh</creator><creator>Jia Qi Yip</creator><creator>Chng, Eng Siong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230914</creationdate><title>Codec Data Augmentation for Time-domain Heart Sound Classification</title><author>Mishra, Ansh ; Jia Qi Yip ; Chng, Eng Siong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28651400633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Codec</topic><topic>Data augmentation</topic><topic>Heart diseases</topic><topic>Machine learning</topic><topic>Time domain analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Mishra, Ansh</creatorcontrib><creatorcontrib>Jia Qi Yip</creatorcontrib><creatorcontrib>Chng, Eng Siong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishra, Ansh</au><au>Jia Qi Yip</au><au>Chng, Eng Siong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Codec Data Augmentation for Time-domain Heart Sound Classification</atitle><jtitle>arXiv.org</jtitle><date>2023-09-14</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Heart auscultations are a low-cost and effective way of detecting valvular heart diseases early, which can save lives. Nevertheless, it has been difficult to scale this screening method since the effectiveness of auscultations is dependent on the skill of doctors. As such, there has been increasing research interest in the automatic classification of heart sounds using deep learning algorithms. However, it is currently difficult to develop good heart sound classification models due to the limited data available for training. In this work, we propose a simple time domain approach, to the heart sound classification problem with a base classification error rate of 0.8 and show that augmentation of the data through codec simulation can improve the classification error rate to 0.2. With data augmentation, our approach outperforms the existing time-domain CNN-BiLSTM baseline model. Critically, our experiments show that codec data augmentation is effective in getting around the data limitation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2865140063
source Free E- Journals
subjects Algorithms
Classification
Codec
Data augmentation
Heart diseases
Machine learning
Time domain analysis
title Codec Data Augmentation for Time-domain Heart Sound Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A12%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Codec%20Data%20Augmentation%20for%20Time-domain%20Heart%20Sound%20Classification&rft.jtitle=arXiv.org&rft.au=Mishra,%20Ansh&rft.date=2023-09-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2865140063%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865140063&rft_id=info:pmid/&rfr_iscdi=true