MVCV-Traffic: multiview road traffic state estimation via cross-view learning

Fine-grained urban traffic data are often incomplete owing to limitations in sensor technology and economic cost. However, data-driven traffic analysis methods in intelligent transportation systems (ITSs) heavily rely on the quality of input data. Thus, accurately estimating missing traffic observat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of geographical information science : IJGIS 2023-10, Vol.37 (10), p.2205-2237
Hauptverfasser: Deng, Min, Chen, Kaiqi, Lei, Kaiyuan, Chen, Yuanfang, Shi, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2237
container_issue 10
container_start_page 2205
container_title International journal of geographical information science : IJGIS
container_volume 37
creator Deng, Min
Chen, Kaiqi
Lei, Kaiyuan
Chen, Yuanfang
Shi, Yan
description Fine-grained urban traffic data are often incomplete owing to limitations in sensor technology and economic cost. However, data-driven traffic analysis methods in intelligent transportation systems (ITSs) heavily rely on the quality of input data. Thus, accurately estimating missing traffic observations is an essential data engineering task in ITSs. The complexity of underlying node-wise correlation structures and various missing scenarios presents a significant challenge in achieving high-precision estimation. This study proposes a novel multiview neural network termed MVCV-Traffic, equipped with a cross-view learning mechanism, to improve traffic estimation. The contributions of this model can be summarized into two parts: multiview learning and cross-view fusing. For multiview learning, several specialized neural networks are adopted to fit diverse correlation structures from different views. For cross-view fusing, a new information fusion strategy merges multiview messages at both feature and output levels to enhance the learning of joint correlations. Experiments on two real-world datasets demonstrate that the proposed model significantly outperforms existing traffic speed estimation methods for different types and rates of missing data.
doi_str_mv 10.1080/13658816.2023.2249968
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2865138367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2865138367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-e362c51dec5ddc06756f6ee08dd485e3f8251ad84311190a90b3ce8bcb1fa183</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGp_gjDgemoyaTJ3XCnFF7S4Kd2GTB4SmU5qkrb035t2dOvqXi7fOfdwELoleEow4HtCOQMgfFrhik6ratY0HC7QKN-rkmKoL887K0_QNZrE6NpMQgNQsxFaLtfzdbkK0lqnHorNrktu78yhCF7qIg33IiaZTGFichuZnO-LvZOFCj7G8gx3Robe9Z836MrKLprJ7xyj1cvzav5WLj5e3-dPi1JRCqk0OZtiRBvFtFaY14xbbgwGrWfADLVQMSI1zCghpMGywS1VBlrVEisJ0DG6G2y3wX_vcizx5Xehzx9FBZwRCpTXmWIDdQ4ajBXbkPOHoyBYnLoTf92JU3fit7usexx0rrc-bOTBh06LJI-dDzbIXrko6P8WP4KEddg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865138367</pqid></control><display><type>article</type><title>MVCV-Traffic: multiview road traffic state estimation via cross-view learning</title><source>Taylor &amp; Francis Online</source><source>Alma/SFX Local Collection</source><creator>Deng, Min ; Chen, Kaiqi ; Lei, Kaiyuan ; Chen, Yuanfang ; Shi, Yan</creator><creatorcontrib>Deng, Min ; Chen, Kaiqi ; Lei, Kaiyuan ; Chen, Yuanfang ; Shi, Yan</creatorcontrib><description>Fine-grained urban traffic data are often incomplete owing to limitations in sensor technology and economic cost. However, data-driven traffic analysis methods in intelligent transportation systems (ITSs) heavily rely on the quality of input data. Thus, accurately estimating missing traffic observations is an essential data engineering task in ITSs. The complexity of underlying node-wise correlation structures and various missing scenarios presents a significant challenge in achieving high-precision estimation. This study proposes a novel multiview neural network termed MVCV-Traffic, equipped with a cross-view learning mechanism, to improve traffic estimation. The contributions of this model can be summarized into two parts: multiview learning and cross-view fusing. For multiview learning, several specialized neural networks are adopted to fit diverse correlation structures from different views. For cross-view fusing, a new information fusion strategy merges multiview messages at both feature and output levels to enhance the learning of joint correlations. Experiments on two real-world datasets demonstrate that the proposed model significantly outperforms existing traffic speed estimation methods for different types and rates of missing data.</description><identifier>ISSN: 1365-8816</identifier><identifier>EISSN: 1362-3087</identifier><identifier>EISSN: 1365-8824</identifier><identifier>DOI: 10.1080/13658816.2023.2249968</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Correlation ; Cost analysis ; Data integration ; Economic analysis ; Economic impact ; intelligent transportation system ; Intelligent transportation systems ; Learning ; Missing data ; multiview learning ; Neural networks ; State estimation ; Traffic ; Traffic analysis ; Traffic engineering ; Traffic estimation ; Traffic information ; Traffic models ; Traffic speed</subject><ispartof>International journal of geographical information science : IJGIS, 2023-10, Vol.37 (10), p.2205-2237</ispartof><rights>2023 Informa UK Limited, trading as Taylor &amp; Francis Group 2023</rights><rights>2023 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-e362c51dec5ddc06756f6ee08dd485e3f8251ad84311190a90b3ce8bcb1fa183</citedby><cites>FETCH-LOGICAL-c338t-e362c51dec5ddc06756f6ee08dd485e3f8251ad84311190a90b3ce8bcb1fa183</cites><orcidid>0000-0002-9136-9764 ; 0000-0001-7505-0764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/13658816.2023.2249968$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/13658816.2023.2249968$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Deng, Min</creatorcontrib><creatorcontrib>Chen, Kaiqi</creatorcontrib><creatorcontrib>Lei, Kaiyuan</creatorcontrib><creatorcontrib>Chen, Yuanfang</creatorcontrib><creatorcontrib>Shi, Yan</creatorcontrib><title>MVCV-Traffic: multiview road traffic state estimation via cross-view learning</title><title>International journal of geographical information science : IJGIS</title><description>Fine-grained urban traffic data are often incomplete owing to limitations in sensor technology and economic cost. However, data-driven traffic analysis methods in intelligent transportation systems (ITSs) heavily rely on the quality of input data. Thus, accurately estimating missing traffic observations is an essential data engineering task in ITSs. The complexity of underlying node-wise correlation structures and various missing scenarios presents a significant challenge in achieving high-precision estimation. This study proposes a novel multiview neural network termed MVCV-Traffic, equipped with a cross-view learning mechanism, to improve traffic estimation. The contributions of this model can be summarized into two parts: multiview learning and cross-view fusing. For multiview learning, several specialized neural networks are adopted to fit diverse correlation structures from different views. For cross-view fusing, a new information fusion strategy merges multiview messages at both feature and output levels to enhance the learning of joint correlations. Experiments on two real-world datasets demonstrate that the proposed model significantly outperforms existing traffic speed estimation methods for different types and rates of missing data.</description><subject>Correlation</subject><subject>Cost analysis</subject><subject>Data integration</subject><subject>Economic analysis</subject><subject>Economic impact</subject><subject>intelligent transportation system</subject><subject>Intelligent transportation systems</subject><subject>Learning</subject><subject>Missing data</subject><subject>multiview learning</subject><subject>Neural networks</subject><subject>State estimation</subject><subject>Traffic</subject><subject>Traffic analysis</subject><subject>Traffic engineering</subject><subject>Traffic estimation</subject><subject>Traffic information</subject><subject>Traffic models</subject><subject>Traffic speed</subject><issn>1365-8816</issn><issn>1362-3087</issn><issn>1365-8824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWGp_gjDgemoyaTJ3XCnFF7S4Kd2GTB4SmU5qkrb035t2dOvqXi7fOfdwELoleEow4HtCOQMgfFrhik6ratY0HC7QKN-rkmKoL887K0_QNZrE6NpMQgNQsxFaLtfzdbkK0lqnHorNrktu78yhCF7qIg33IiaZTGFichuZnO-LvZOFCj7G8gx3Robe9Z836MrKLprJ7xyj1cvzav5WLj5e3-dPi1JRCqk0OZtiRBvFtFaY14xbbgwGrWfADLVQMSI1zCghpMGywS1VBlrVEisJ0DG6G2y3wX_vcizx5Xehzx9FBZwRCpTXmWIDdQ4ajBXbkPOHoyBYnLoTf92JU3fit7usexx0rrc-bOTBh06LJI-dDzbIXrko6P8WP4KEddg</recordid><startdate>20231003</startdate><enddate>20231003</enddate><creator>Deng, Min</creator><creator>Chen, Kaiqi</creator><creator>Lei, Kaiyuan</creator><creator>Chen, Yuanfang</creator><creator>Shi, Yan</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9136-9764</orcidid><orcidid>https://orcid.org/0000-0001-7505-0764</orcidid></search><sort><creationdate>20231003</creationdate><title>MVCV-Traffic: multiview road traffic state estimation via cross-view learning</title><author>Deng, Min ; Chen, Kaiqi ; Lei, Kaiyuan ; Chen, Yuanfang ; Shi, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-e362c51dec5ddc06756f6ee08dd485e3f8251ad84311190a90b3ce8bcb1fa183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Correlation</topic><topic>Cost analysis</topic><topic>Data integration</topic><topic>Economic analysis</topic><topic>Economic impact</topic><topic>intelligent transportation system</topic><topic>Intelligent transportation systems</topic><topic>Learning</topic><topic>Missing data</topic><topic>multiview learning</topic><topic>Neural networks</topic><topic>State estimation</topic><topic>Traffic</topic><topic>Traffic analysis</topic><topic>Traffic engineering</topic><topic>Traffic estimation</topic><topic>Traffic information</topic><topic>Traffic models</topic><topic>Traffic speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Min</creatorcontrib><creatorcontrib>Chen, Kaiqi</creatorcontrib><creatorcontrib>Lei, Kaiyuan</creatorcontrib><creatorcontrib>Chen, Yuanfang</creatorcontrib><creatorcontrib>Shi, Yan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of geographical information science : IJGIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Min</au><au>Chen, Kaiqi</au><au>Lei, Kaiyuan</au><au>Chen, Yuanfang</au><au>Shi, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MVCV-Traffic: multiview road traffic state estimation via cross-view learning</atitle><jtitle>International journal of geographical information science : IJGIS</jtitle><date>2023-10-03</date><risdate>2023</risdate><volume>37</volume><issue>10</issue><spage>2205</spage><epage>2237</epage><pages>2205-2237</pages><issn>1365-8816</issn><eissn>1362-3087</eissn><eissn>1365-8824</eissn><abstract>Fine-grained urban traffic data are often incomplete owing to limitations in sensor technology and economic cost. However, data-driven traffic analysis methods in intelligent transportation systems (ITSs) heavily rely on the quality of input data. Thus, accurately estimating missing traffic observations is an essential data engineering task in ITSs. The complexity of underlying node-wise correlation structures and various missing scenarios presents a significant challenge in achieving high-precision estimation. This study proposes a novel multiview neural network termed MVCV-Traffic, equipped with a cross-view learning mechanism, to improve traffic estimation. The contributions of this model can be summarized into two parts: multiview learning and cross-view fusing. For multiview learning, several specialized neural networks are adopted to fit diverse correlation structures from different views. For cross-view fusing, a new information fusion strategy merges multiview messages at both feature and output levels to enhance the learning of joint correlations. Experiments on two real-world datasets demonstrate that the proposed model significantly outperforms existing traffic speed estimation methods for different types and rates of missing data.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/13658816.2023.2249968</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-9136-9764</orcidid><orcidid>https://orcid.org/0000-0001-7505-0764</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1365-8816
ispartof International journal of geographical information science : IJGIS, 2023-10, Vol.37 (10), p.2205-2237
issn 1365-8816
1362-3087
1365-8824
language eng
recordid cdi_proquest_journals_2865138367
source Taylor & Francis Online; Alma/SFX Local Collection
subjects Correlation
Cost analysis
Data integration
Economic analysis
Economic impact
intelligent transportation system
Intelligent transportation systems
Learning
Missing data
multiview learning
Neural networks
State estimation
Traffic
Traffic analysis
Traffic engineering
Traffic estimation
Traffic information
Traffic models
Traffic speed
title MVCV-Traffic: multiview road traffic state estimation via cross-view learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A51%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MVCV-Traffic:%20multiview%20road%20traffic%20state%20estimation%20via%20cross-view%20learning&rft.jtitle=International%20journal%20of%20geographical%20information%20science%20:%20IJGIS&rft.au=Deng,%20Min&rft.date=2023-10-03&rft.volume=37&rft.issue=10&rft.spage=2205&rft.epage=2237&rft.pages=2205-2237&rft.issn=1365-8816&rft.eissn=1362-3087&rft_id=info:doi/10.1080/13658816.2023.2249968&rft_dat=%3Cproquest_infor%3E2865138367%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865138367&rft_id=info:pmid/&rfr_iscdi=true