MVCV-Traffic: multiview road traffic state estimation via cross-view learning
Fine-grained urban traffic data are often incomplete owing to limitations in sensor technology and economic cost. However, data-driven traffic analysis methods in intelligent transportation systems (ITSs) heavily rely on the quality of input data. Thus, accurately estimating missing traffic observat...
Gespeichert in:
Veröffentlicht in: | International journal of geographical information science : IJGIS 2023-10, Vol.37 (10), p.2205-2237 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2237 |
---|---|
container_issue | 10 |
container_start_page | 2205 |
container_title | International journal of geographical information science : IJGIS |
container_volume | 37 |
creator | Deng, Min Chen, Kaiqi Lei, Kaiyuan Chen, Yuanfang Shi, Yan |
description | Fine-grained urban traffic data are often incomplete owing to limitations in sensor technology and economic cost. However, data-driven traffic analysis methods in intelligent transportation systems (ITSs) heavily rely on the quality of input data. Thus, accurately estimating missing traffic observations is an essential data engineering task in ITSs. The complexity of underlying node-wise correlation structures and various missing scenarios presents a significant challenge in achieving high-precision estimation. This study proposes a novel multiview neural network termed MVCV-Traffic, equipped with a cross-view learning mechanism, to improve traffic estimation. The contributions of this model can be summarized into two parts: multiview learning and cross-view fusing. For multiview learning, several specialized neural networks are adopted to fit diverse correlation structures from different views. For cross-view fusing, a new information fusion strategy merges multiview messages at both feature and output levels to enhance the learning of joint correlations. Experiments on two real-world datasets demonstrate that the proposed model significantly outperforms existing traffic speed estimation methods for different types and rates of missing data. |
doi_str_mv | 10.1080/13658816.2023.2249968 |
format | Article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2865138367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2865138367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-e362c51dec5ddc06756f6ee08dd485e3f8251ad84311190a90b3ce8bcb1fa183</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGp_gjDgemoyaTJ3XCnFF7S4Kd2GTB4SmU5qkrb035t2dOvqXi7fOfdwELoleEow4HtCOQMgfFrhik6ratY0HC7QKN-rkmKoL887K0_QNZrE6NpMQgNQsxFaLtfzdbkK0lqnHorNrktu78yhCF7qIg33IiaZTGFichuZnO-LvZOFCj7G8gx3Robe9Z836MrKLprJ7xyj1cvzav5WLj5e3-dPi1JRCqk0OZtiRBvFtFaY14xbbgwGrWfADLVQMSI1zCghpMGywS1VBlrVEisJ0DG6G2y3wX_vcizx5Xehzx9FBZwRCpTXmWIDdQ4ajBXbkPOHoyBYnLoTf92JU3fit7usexx0rrc-bOTBh06LJI-dDzbIXrko6P8WP4KEddg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865138367</pqid></control><display><type>article</type><title>MVCV-Traffic: multiview road traffic state estimation via cross-view learning</title><source>Taylor & Francis Online</source><source>Alma/SFX Local Collection</source><creator>Deng, Min ; Chen, Kaiqi ; Lei, Kaiyuan ; Chen, Yuanfang ; Shi, Yan</creator><creatorcontrib>Deng, Min ; Chen, Kaiqi ; Lei, Kaiyuan ; Chen, Yuanfang ; Shi, Yan</creatorcontrib><description>Fine-grained urban traffic data are often incomplete owing to limitations in sensor technology and economic cost. However, data-driven traffic analysis methods in intelligent transportation systems (ITSs) heavily rely on the quality of input data. Thus, accurately estimating missing traffic observations is an essential data engineering task in ITSs. The complexity of underlying node-wise correlation structures and various missing scenarios presents a significant challenge in achieving high-precision estimation. This study proposes a novel multiview neural network termed MVCV-Traffic, equipped with a cross-view learning mechanism, to improve traffic estimation. The contributions of this model can be summarized into two parts: multiview learning and cross-view fusing. For multiview learning, several specialized neural networks are adopted to fit diverse correlation structures from different views. For cross-view fusing, a new information fusion strategy merges multiview messages at both feature and output levels to enhance the learning of joint correlations. Experiments on two real-world datasets demonstrate that the proposed model significantly outperforms existing traffic speed estimation methods for different types and rates of missing data.</description><identifier>ISSN: 1365-8816</identifier><identifier>EISSN: 1362-3087</identifier><identifier>EISSN: 1365-8824</identifier><identifier>DOI: 10.1080/13658816.2023.2249968</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Correlation ; Cost analysis ; Data integration ; Economic analysis ; Economic impact ; intelligent transportation system ; Intelligent transportation systems ; Learning ; Missing data ; multiview learning ; Neural networks ; State estimation ; Traffic ; Traffic analysis ; Traffic engineering ; Traffic estimation ; Traffic information ; Traffic models ; Traffic speed</subject><ispartof>International journal of geographical information science : IJGIS, 2023-10, Vol.37 (10), p.2205-2237</ispartof><rights>2023 Informa UK Limited, trading as Taylor & Francis Group 2023</rights><rights>2023 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-e362c51dec5ddc06756f6ee08dd485e3f8251ad84311190a90b3ce8bcb1fa183</citedby><cites>FETCH-LOGICAL-c338t-e362c51dec5ddc06756f6ee08dd485e3f8251ad84311190a90b3ce8bcb1fa183</cites><orcidid>0000-0002-9136-9764 ; 0000-0001-7505-0764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/13658816.2023.2249968$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/13658816.2023.2249968$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Deng, Min</creatorcontrib><creatorcontrib>Chen, Kaiqi</creatorcontrib><creatorcontrib>Lei, Kaiyuan</creatorcontrib><creatorcontrib>Chen, Yuanfang</creatorcontrib><creatorcontrib>Shi, Yan</creatorcontrib><title>MVCV-Traffic: multiview road traffic state estimation via cross-view learning</title><title>International journal of geographical information science : IJGIS</title><description>Fine-grained urban traffic data are often incomplete owing to limitations in sensor technology and economic cost. However, data-driven traffic analysis methods in intelligent transportation systems (ITSs) heavily rely on the quality of input data. Thus, accurately estimating missing traffic observations is an essential data engineering task in ITSs. The complexity of underlying node-wise correlation structures and various missing scenarios presents a significant challenge in achieving high-precision estimation. This study proposes a novel multiview neural network termed MVCV-Traffic, equipped with a cross-view learning mechanism, to improve traffic estimation. The contributions of this model can be summarized into two parts: multiview learning and cross-view fusing. For multiview learning, several specialized neural networks are adopted to fit diverse correlation structures from different views. For cross-view fusing, a new information fusion strategy merges multiview messages at both feature and output levels to enhance the learning of joint correlations. Experiments on two real-world datasets demonstrate that the proposed model significantly outperforms existing traffic speed estimation methods for different types and rates of missing data.</description><subject>Correlation</subject><subject>Cost analysis</subject><subject>Data integration</subject><subject>Economic analysis</subject><subject>Economic impact</subject><subject>intelligent transportation system</subject><subject>Intelligent transportation systems</subject><subject>Learning</subject><subject>Missing data</subject><subject>multiview learning</subject><subject>Neural networks</subject><subject>State estimation</subject><subject>Traffic</subject><subject>Traffic analysis</subject><subject>Traffic engineering</subject><subject>Traffic estimation</subject><subject>Traffic information</subject><subject>Traffic models</subject><subject>Traffic speed</subject><issn>1365-8816</issn><issn>1362-3087</issn><issn>1365-8824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWGp_gjDgemoyaTJ3XCnFF7S4Kd2GTB4SmU5qkrb035t2dOvqXi7fOfdwELoleEow4HtCOQMgfFrhik6ratY0HC7QKN-rkmKoL887K0_QNZrE6NpMQgNQsxFaLtfzdbkK0lqnHorNrktu78yhCF7qIg33IiaZTGFichuZnO-LvZOFCj7G8gx3Robe9Z836MrKLprJ7xyj1cvzav5WLj5e3-dPi1JRCqk0OZtiRBvFtFaY14xbbgwGrWfADLVQMSI1zCghpMGywS1VBlrVEisJ0DG6G2y3wX_vcizx5Xehzx9FBZwRCpTXmWIDdQ4ajBXbkPOHoyBYnLoTf92JU3fit7usexx0rrc-bOTBh06LJI-dDzbIXrko6P8WP4KEddg</recordid><startdate>20231003</startdate><enddate>20231003</enddate><creator>Deng, Min</creator><creator>Chen, Kaiqi</creator><creator>Lei, Kaiyuan</creator><creator>Chen, Yuanfang</creator><creator>Shi, Yan</creator><general>Taylor & Francis</general><general>Taylor & Francis LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9136-9764</orcidid><orcidid>https://orcid.org/0000-0001-7505-0764</orcidid></search><sort><creationdate>20231003</creationdate><title>MVCV-Traffic: multiview road traffic state estimation via cross-view learning</title><author>Deng, Min ; Chen, Kaiqi ; Lei, Kaiyuan ; Chen, Yuanfang ; Shi, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-e362c51dec5ddc06756f6ee08dd485e3f8251ad84311190a90b3ce8bcb1fa183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Correlation</topic><topic>Cost analysis</topic><topic>Data integration</topic><topic>Economic analysis</topic><topic>Economic impact</topic><topic>intelligent transportation system</topic><topic>Intelligent transportation systems</topic><topic>Learning</topic><topic>Missing data</topic><topic>multiview learning</topic><topic>Neural networks</topic><topic>State estimation</topic><topic>Traffic</topic><topic>Traffic analysis</topic><topic>Traffic engineering</topic><topic>Traffic estimation</topic><topic>Traffic information</topic><topic>Traffic models</topic><topic>Traffic speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Min</creatorcontrib><creatorcontrib>Chen, Kaiqi</creatorcontrib><creatorcontrib>Lei, Kaiyuan</creatorcontrib><creatorcontrib>Chen, Yuanfang</creatorcontrib><creatorcontrib>Shi, Yan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of geographical information science : IJGIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Min</au><au>Chen, Kaiqi</au><au>Lei, Kaiyuan</au><au>Chen, Yuanfang</au><au>Shi, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MVCV-Traffic: multiview road traffic state estimation via cross-view learning</atitle><jtitle>International journal of geographical information science : IJGIS</jtitle><date>2023-10-03</date><risdate>2023</risdate><volume>37</volume><issue>10</issue><spage>2205</spage><epage>2237</epage><pages>2205-2237</pages><issn>1365-8816</issn><eissn>1362-3087</eissn><eissn>1365-8824</eissn><abstract>Fine-grained urban traffic data are often incomplete owing to limitations in sensor technology and economic cost. However, data-driven traffic analysis methods in intelligent transportation systems (ITSs) heavily rely on the quality of input data. Thus, accurately estimating missing traffic observations is an essential data engineering task in ITSs. The complexity of underlying node-wise correlation structures and various missing scenarios presents a significant challenge in achieving high-precision estimation. This study proposes a novel multiview neural network termed MVCV-Traffic, equipped with a cross-view learning mechanism, to improve traffic estimation. The contributions of this model can be summarized into two parts: multiview learning and cross-view fusing. For multiview learning, several specialized neural networks are adopted to fit diverse correlation structures from different views. For cross-view fusing, a new information fusion strategy merges multiview messages at both feature and output levels to enhance the learning of joint correlations. Experiments on two real-world datasets demonstrate that the proposed model significantly outperforms existing traffic speed estimation methods for different types and rates of missing data.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/13658816.2023.2249968</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-9136-9764</orcidid><orcidid>https://orcid.org/0000-0001-7505-0764</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1365-8816 |
ispartof | International journal of geographical information science : IJGIS, 2023-10, Vol.37 (10), p.2205-2237 |
issn | 1365-8816 1362-3087 1365-8824 |
language | eng |
recordid | cdi_proquest_journals_2865138367 |
source | Taylor & Francis Online; Alma/SFX Local Collection |
subjects | Correlation Cost analysis Data integration Economic analysis Economic impact intelligent transportation system Intelligent transportation systems Learning Missing data multiview learning Neural networks State estimation Traffic Traffic analysis Traffic engineering Traffic estimation Traffic information Traffic models Traffic speed |
title | MVCV-Traffic: multiview road traffic state estimation via cross-view learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A51%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MVCV-Traffic:%20multiview%20road%20traffic%20state%20estimation%20via%20cross-view%20learning&rft.jtitle=International%20journal%20of%20geographical%20information%20science%20:%20IJGIS&rft.au=Deng,%20Min&rft.date=2023-10-03&rft.volume=37&rft.issue=10&rft.spage=2205&rft.epage=2237&rft.pages=2205-2237&rft.issn=1365-8816&rft.eissn=1362-3087&rft_id=info:doi/10.1080/13658816.2023.2249968&rft_dat=%3Cproquest_infor%3E2865138367%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865138367&rft_id=info:pmid/&rfr_iscdi=true |