Knowledge Graph-Enhanced Sampling for Conversational Recommendation System
The traditional recommendation systems mainly use offline user data to train offline models, and then recommend items for online users, thus suffering from the unreliable estimation of user preferences based on sparse and noisy historical data. Conversational Recommendation System(CRS) uses the inte...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2023-10, Vol.35 (10), p.9890-9903 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9903 |
---|---|
container_issue | 10 |
container_start_page | 9890 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 35 |
creator | Zhao, Mengyuan Huang, Xiaowen Zhu, Lixi Sang, Jitao Yu, Jian |
description | The traditional recommendation systems mainly use offline user data to train offline models, and then recommend items for online users, thus suffering from the unreliable estimation of user preferences based on sparse and noisy historical data. Conversational Recommendation System(CRS) uses the interactive form of the dialogue systems to solve the intrinsic problems of traditional recommendation systems. However, due to the lack of contextual information modeling, the existing CRS models are unable to deal with the exploitation and exploration(E&E) problem well, resulting in the heavy burden on users. To address the aforementioned issue, this work proposes a contextual information enhancement model tailored for CRS, called Knowledge Graph-enhanced Sampling(KGenSam). KGenSam integrates the dynamic graph of user interaction data with the external knowledge into one heterogeneous Knowledge Graph(KG) as the contextual information environment. Then, two samplers are designed to enhance knowledge by sampling fuzzy samples with high uncertainty for obtaining user preferences and reliable negative samples for updating recommender to achieve efficient acquisition of user preferences and model updating, and thus provide a powerful solution for CRS to deal with E&E problem. Experimental results on two real-world datasets demonstrate the superiority of KGenSam with significant improvements over state-of-the-art methods. |
doi_str_mv | 10.1109/TKDE.2022.3185154 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2865092569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9803276</ieee_id><sourcerecordid>2865092569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-5cd0460644114fa1eb267a09de15ec008c11b7c9375636bdcc64a58d53ff520e3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7d2a8kR6m1aguCredlu5m0KUk27qZK_72pLZ5mGJ53eHkIuQU6AqDZw3L2NBkxytiIQypBijMyACnTmEEG5_1OBcSCi-SSXIWwpZSmSQoD8jZr3E-F-RqjqTftJp40G9NYzKOFqduqbNZR4Xw0ds03-mC60jWmij7QurrGJv87RIt96LC-JheFqQLenOaQfD5PluOXeP4-fR0_zmPLhOxiaXMqFFVCAIjCAK6YSgzNcgSJtu9lAVaJzXgiFVer3FoljExzyYtCMop8SO6Pf1vvvnYYOr11O9_XCpqlStKMSZX1FBwp610IHgvd-rI2fq-B6oMyfVCmD8r0SVmfuTtmSkT857OUcpYo_gtRnWdL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865092569</pqid></control><display><type>article</type><title>Knowledge Graph-Enhanced Sampling for Conversational Recommendation System</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Mengyuan ; Huang, Xiaowen ; Zhu, Lixi ; Sang, Jitao ; Yu, Jian</creator><creatorcontrib>Zhao, Mengyuan ; Huang, Xiaowen ; Zhu, Lixi ; Sang, Jitao ; Yu, Jian</creatorcontrib><description>The traditional recommendation systems mainly use offline user data to train offline models, and then recommend items for online users, thus suffering from the unreliable estimation of user preferences based on sparse and noisy historical data. Conversational Recommendation System(CRS) uses the interactive form of the dialogue systems to solve the intrinsic problems of traditional recommendation systems. However, due to the lack of contextual information modeling, the existing CRS models are unable to deal with the exploitation and exploration(E&E) problem well, resulting in the heavy burden on users. To address the aforementioned issue, this work proposes a contextual information enhancement model tailored for CRS, called Knowledge Graph-enhanced Sampling(KGenSam). KGenSam integrates the dynamic graph of user interaction data with the external knowledge into one heterogeneous Knowledge Graph(KG) as the contextual information environment. Then, two samplers are designed to enhance knowledge by sampling fuzzy samples with high uncertainty for obtaining user preferences and reliable negative samples for updating recommender to achieve efficient acquisition of user preferences and model updating, and thus provide a powerful solution for CRS to deal with E&E problem. Experimental results on two real-world datasets demonstrate the superiority of KGenSam with significant improvements over state-of-the-art methods.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2022.3185154</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>active learning ; Biological system modeling ; Conversational recommendation system ; Data analysis ; Data mining ; knowledge graph ; Knowledge representation ; Model updating ; negative sampling ; Oral communication ; Real-time systems ; Recommender systems ; reinforcement learning ; Samplers ; Sampling ; Sampling methods ; Training</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-10, Vol.35 (10), p.9890-9903</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-5cd0460644114fa1eb267a09de15ec008c11b7c9375636bdcc64a58d53ff520e3</cites><orcidid>0000-0002-8258-3793 ; 0000-0001-9590-3285 ; 0000-0002-0699-3205 ; 0000-0002-7121-7771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9803276$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9803276$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Mengyuan</creatorcontrib><creatorcontrib>Huang, Xiaowen</creatorcontrib><creatorcontrib>Zhu, Lixi</creatorcontrib><creatorcontrib>Sang, Jitao</creatorcontrib><creatorcontrib>Yu, Jian</creatorcontrib><title>Knowledge Graph-Enhanced Sampling for Conversational Recommendation System</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>The traditional recommendation systems mainly use offline user data to train offline models, and then recommend items for online users, thus suffering from the unreliable estimation of user preferences based on sparse and noisy historical data. Conversational Recommendation System(CRS) uses the interactive form of the dialogue systems to solve the intrinsic problems of traditional recommendation systems. However, due to the lack of contextual information modeling, the existing CRS models are unable to deal with the exploitation and exploration(E&E) problem well, resulting in the heavy burden on users. To address the aforementioned issue, this work proposes a contextual information enhancement model tailored for CRS, called Knowledge Graph-enhanced Sampling(KGenSam). KGenSam integrates the dynamic graph of user interaction data with the external knowledge into one heterogeneous Knowledge Graph(KG) as the contextual information environment. Then, two samplers are designed to enhance knowledge by sampling fuzzy samples with high uncertainty for obtaining user preferences and reliable negative samples for updating recommender to achieve efficient acquisition of user preferences and model updating, and thus provide a powerful solution for CRS to deal with E&E problem. Experimental results on two real-world datasets demonstrate the superiority of KGenSam with significant improvements over state-of-the-art methods.</description><subject>active learning</subject><subject>Biological system modeling</subject><subject>Conversational recommendation system</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>knowledge graph</subject><subject>Knowledge representation</subject><subject>Model updating</subject><subject>negative sampling</subject><subject>Oral communication</subject><subject>Real-time systems</subject><subject>Recommender systems</subject><subject>reinforcement learning</subject><subject>Samplers</subject><subject>Sampling</subject><subject>Sampling methods</subject><subject>Training</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7d2a8kR6m1aguCredlu5m0KUk27qZK_72pLZ5mGJ53eHkIuQU6AqDZw3L2NBkxytiIQypBijMyACnTmEEG5_1OBcSCi-SSXIWwpZSmSQoD8jZr3E-F-RqjqTftJp40G9NYzKOFqduqbNZR4Xw0ds03-mC60jWmij7QurrGJv87RIt96LC-JheFqQLenOaQfD5PluOXeP4-fR0_zmPLhOxiaXMqFFVCAIjCAK6YSgzNcgSJtu9lAVaJzXgiFVer3FoljExzyYtCMop8SO6Pf1vvvnYYOr11O9_XCpqlStKMSZX1FBwp610IHgvd-rI2fq-B6oMyfVCmD8r0SVmfuTtmSkT857OUcpYo_gtRnWdL</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Zhao, Mengyuan</creator><creator>Huang, Xiaowen</creator><creator>Zhu, Lixi</creator><creator>Sang, Jitao</creator><creator>Yu, Jian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8258-3793</orcidid><orcidid>https://orcid.org/0000-0001-9590-3285</orcidid><orcidid>https://orcid.org/0000-0002-0699-3205</orcidid><orcidid>https://orcid.org/0000-0002-7121-7771</orcidid></search><sort><creationdate>20231001</creationdate><title>Knowledge Graph-Enhanced Sampling for Conversational Recommendation System</title><author>Zhao, Mengyuan ; Huang, Xiaowen ; Zhu, Lixi ; Sang, Jitao ; Yu, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-5cd0460644114fa1eb267a09de15ec008c11b7c9375636bdcc64a58d53ff520e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>active learning</topic><topic>Biological system modeling</topic><topic>Conversational recommendation system</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>knowledge graph</topic><topic>Knowledge representation</topic><topic>Model updating</topic><topic>negative sampling</topic><topic>Oral communication</topic><topic>Real-time systems</topic><topic>Recommender systems</topic><topic>reinforcement learning</topic><topic>Samplers</topic><topic>Sampling</topic><topic>Sampling methods</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Mengyuan</creatorcontrib><creatorcontrib>Huang, Xiaowen</creatorcontrib><creatorcontrib>Zhu, Lixi</creatorcontrib><creatorcontrib>Sang, Jitao</creatorcontrib><creatorcontrib>Yu, Jian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Mengyuan</au><au>Huang, Xiaowen</au><au>Zhu, Lixi</au><au>Sang, Jitao</au><au>Yu, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knowledge Graph-Enhanced Sampling for Conversational Recommendation System</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>35</volume><issue>10</issue><spage>9890</spage><epage>9903</epage><pages>9890-9903</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>The traditional recommendation systems mainly use offline user data to train offline models, and then recommend items for online users, thus suffering from the unreliable estimation of user preferences based on sparse and noisy historical data. Conversational Recommendation System(CRS) uses the interactive form of the dialogue systems to solve the intrinsic problems of traditional recommendation systems. However, due to the lack of contextual information modeling, the existing CRS models are unable to deal with the exploitation and exploration(E&E) problem well, resulting in the heavy burden on users. To address the aforementioned issue, this work proposes a contextual information enhancement model tailored for CRS, called Knowledge Graph-enhanced Sampling(KGenSam). KGenSam integrates the dynamic graph of user interaction data with the external knowledge into one heterogeneous Knowledge Graph(KG) as the contextual information environment. Then, two samplers are designed to enhance knowledge by sampling fuzzy samples with high uncertainty for obtaining user preferences and reliable negative samples for updating recommender to achieve efficient acquisition of user preferences and model updating, and thus provide a powerful solution for CRS to deal with E&E problem. Experimental results on two real-world datasets demonstrate the superiority of KGenSam with significant improvements over state-of-the-art methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2022.3185154</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8258-3793</orcidid><orcidid>https://orcid.org/0000-0001-9590-3285</orcidid><orcidid>https://orcid.org/0000-0002-0699-3205</orcidid><orcidid>https://orcid.org/0000-0002-7121-7771</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2023-10, Vol.35 (10), p.9890-9903 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_proquest_journals_2865092569 |
source | IEEE Electronic Library (IEL) |
subjects | active learning Biological system modeling Conversational recommendation system Data analysis Data mining knowledge graph Knowledge representation Model updating negative sampling Oral communication Real-time systems Recommender systems reinforcement learning Samplers Sampling Sampling methods Training |
title | Knowledge Graph-Enhanced Sampling for Conversational Recommendation System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A22%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knowledge%20Graph-Enhanced%20Sampling%20for%20Conversational%20Recommendation%20System&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Zhao,%20Mengyuan&rft.date=2023-10-01&rft.volume=35&rft.issue=10&rft.spage=9890&rft.epage=9903&rft.pages=9890-9903&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2022.3185154&rft_dat=%3Cproquest_RIE%3E2865092569%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865092569&rft_id=info:pmid/&rft_ieee_id=9803276&rfr_iscdi=true |