Thermohydraulic Quench Back in a Copper CICC Coil Cooled by He II
The MAgnetized Disc and Mirror Axion eXperiment (MADMAX) project aims at detecting axion dark matter in the mass range of 100 μeV. To do so, a dipole detector magnet producing 100 T2m2 is needed. In the framework of an innovation partnership with the Max Planck Institute, CEA Paris-Saclay designed t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2023-10, Vol.33 (7), p.1-14 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 7 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 33 |
creator | Abdel Maksoud, W. Durañona, U. Allard, J. Baudouy, B. Berriaud, C. Calvelli, V. Denarie, L. Dilasser, G. Donga, T. Drouen, Y. Godon, P. Godon, R. Guihard, Q. Jurie, S. Juster, F.-P. Lorin, C. Lottin, J.-P. Millot, J.-F. Molinié, F. Nunio, F. Pontarollo, T. Correia-Machado, R. Scola, L. Segrestan, L. Solenne, N. Stacchi, F. |
description | The MAgnetized Disc and Mirror Axion eXperiment (MADMAX) project aims at detecting axion dark matter in the mass range of 100 μeV. To do so, a dipole detector magnet producing 100 T2m2 is needed. In the framework of an innovation partnership with the Max Planck Institute, CEA Paris-Saclay designed this large-scale magnet producing 9 T in a 1.35-m bore. The magnet is made of a cable in-conduit conductor, operating at 1.8 K. One of the main challenges of this novel design is to guarantee the magnet's safety toward quench management. In order to validate the magnet and conductor designs, a mock-up coil with a quench behavior scalable to MADMAX was designed, manufactured, and cold-tested. This article gives an overview of the main guidelines followed to design the prototype fully representative of the MADMAX quench behavior. The experimental facility, instrumentation, and protocol are presented. The main experimental results are given and extensively analyzed with empirical, analytical, and numerical approaches. This article presents the first experimental observation of the existence of the thermohydraulic quench back phenomenon in stagnant superfluid helium. |
doi_str_mv | 10.1109/TASC.2023.3308829 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2865092547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2865092547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-f8e6addd7057970f00627fc7cd23995d348e5412f36ad0ec695a6ce7dedbd2353</originalsourceid><addsrcrecordid>eNotkEFLwzAYhoMoOKc_wFvAc-eXpGmS4wy6FQYiznPIkpR2dmtN10P_vRnb5f3ew8P3woPQM4EFIaBet8tvvaBA2YIxkJKqGzQjnMuMcsJvUwdOMkkpu0cPw7AHILnM-Qwtt3WIh66efLRj2zj8NYajq_Gbdb-4OWKLddf3IWJdap1606bo2uDxbsLrgMvyEd1Vth3C0_XO0c_H-1avs83nqtTLTeaoYKeskqGw3nsBXCgBFUBBReWE85QpxT3LZeA5oRVLGARXKG4LF4QPfpcQzubo5fK3j93fGIaT2XdjPKZJQ2XBQVGei0SRC-ViNwwxVKaPzcHGyRAwZ1PmbMqcTZmrKfYPCzZZQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865092547</pqid></control><display><type>article</type><title>Thermohydraulic Quench Back in a Copper CICC Coil Cooled by He II</title><source>IEEE Electronic Library (IEL)</source><creator>Abdel Maksoud, W. ; Durañona, U. ; Allard, J. ; Baudouy, B. ; Berriaud, C. ; Calvelli, V. ; Denarie, L. ; Dilasser, G. ; Donga, T. ; Drouen, Y. ; Godon, P. ; Godon, R. ; Guihard, Q. ; Jurie, S. ; Juster, F.-P. ; Lorin, C. ; Lottin, J.-P. ; Millot, J.-F. ; Molinié, F. ; Nunio, F. ; Pontarollo, T. ; Correia-Machado, R. ; Scola, L. ; Segrestan, L. ; Solenne, N. ; Stacchi, F.</creator><creatorcontrib>Abdel Maksoud, W. ; Durañona, U. ; Allard, J. ; Baudouy, B. ; Berriaud, C. ; Calvelli, V. ; Denarie, L. ; Dilasser, G. ; Donga, T. ; Drouen, Y. ; Godon, P. ; Godon, R. ; Guihard, Q. ; Jurie, S. ; Juster, F.-P. ; Lorin, C. ; Lottin, J.-P. ; Millot, J.-F. ; Molinié, F. ; Nunio, F. ; Pontarollo, T. ; Correia-Machado, R. ; Scola, L. ; Segrestan, L. ; Solenne, N. ; Stacchi, F.</creatorcontrib><description>The MAgnetized Disc and Mirror Axion eXperiment (MADMAX) project aims at detecting axion dark matter in the mass range of 100 μeV. To do so, a dipole detector magnet producing 100 T2m2 is needed. In the framework of an innovation partnership with the Max Planck Institute, CEA Paris-Saclay designed this large-scale magnet producing 9 T in a 1.35-m bore. The magnet is made of a cable in-conduit conductor, operating at 1.8 K. One of the main challenges of this novel design is to guarantee the magnet's safety toward quench management. In order to validate the magnet and conductor designs, a mock-up coil with a quench behavior scalable to MADMAX was designed, manufactured, and cold-tested. This article gives an overview of the main guidelines followed to design the prototype fully representative of the MADMAX quench behavior. The experimental facility, instrumentation, and protocol are presented. The main experimental results are given and extensively analyzed with empirical, analytical, and numerical approaches. This article presents the first experimental observation of the existence of the thermohydraulic quench back phenomenon in stagnant superfluid helium.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2023.3308829</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Coils ; Conductors ; Dark matter ; Design ; Dipoles ; Empirical analysis ; Fluids ; Helium ; Liquid helium ; Safety management ; Superfluidity</subject><ispartof>IEEE transactions on applied superconductivity, 2023-10, Vol.33 (7), p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-f8e6addd7057970f00627fc7cd23995d348e5412f36ad0ec695a6ce7dedbd2353</citedby><cites>FETCH-LOGICAL-c273t-f8e6addd7057970f00627fc7cd23995d348e5412f36ad0ec695a6ce7dedbd2353</cites><orcidid>0000-0003-1306-5682 ; 0000-0001-5286-6875 ; 0000-0002-8523-9736 ; 0009-0008-0211-4315 ; 0000-0002-0256-4331 ; 0009-0002-6538-671X ; 0000-0002-5253-769X ; 0000-0002-2485-2422 ; 0000-0002-6108-176X ; 0000-0002-8556-7721</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Abdel Maksoud, W.</creatorcontrib><creatorcontrib>Durañona, U.</creatorcontrib><creatorcontrib>Allard, J.</creatorcontrib><creatorcontrib>Baudouy, B.</creatorcontrib><creatorcontrib>Berriaud, C.</creatorcontrib><creatorcontrib>Calvelli, V.</creatorcontrib><creatorcontrib>Denarie, L.</creatorcontrib><creatorcontrib>Dilasser, G.</creatorcontrib><creatorcontrib>Donga, T.</creatorcontrib><creatorcontrib>Drouen, Y.</creatorcontrib><creatorcontrib>Godon, P.</creatorcontrib><creatorcontrib>Godon, R.</creatorcontrib><creatorcontrib>Guihard, Q.</creatorcontrib><creatorcontrib>Jurie, S.</creatorcontrib><creatorcontrib>Juster, F.-P.</creatorcontrib><creatorcontrib>Lorin, C.</creatorcontrib><creatorcontrib>Lottin, J.-P.</creatorcontrib><creatorcontrib>Millot, J.-F.</creatorcontrib><creatorcontrib>Molinié, F.</creatorcontrib><creatorcontrib>Nunio, F.</creatorcontrib><creatorcontrib>Pontarollo, T.</creatorcontrib><creatorcontrib>Correia-Machado, R.</creatorcontrib><creatorcontrib>Scola, L.</creatorcontrib><creatorcontrib>Segrestan, L.</creatorcontrib><creatorcontrib>Solenne, N.</creatorcontrib><creatorcontrib>Stacchi, F.</creatorcontrib><title>Thermohydraulic Quench Back in a Copper CICC Coil Cooled by He II</title><title>IEEE transactions on applied superconductivity</title><description>The MAgnetized Disc and Mirror Axion eXperiment (MADMAX) project aims at detecting axion dark matter in the mass range of 100 μeV. To do so, a dipole detector magnet producing 100 T2m2 is needed. In the framework of an innovation partnership with the Max Planck Institute, CEA Paris-Saclay designed this large-scale magnet producing 9 T in a 1.35-m bore. The magnet is made of a cable in-conduit conductor, operating at 1.8 K. One of the main challenges of this novel design is to guarantee the magnet's safety toward quench management. In order to validate the magnet and conductor designs, a mock-up coil with a quench behavior scalable to MADMAX was designed, manufactured, and cold-tested. This article gives an overview of the main guidelines followed to design the prototype fully representative of the MADMAX quench behavior. The experimental facility, instrumentation, and protocol are presented. The main experimental results are given and extensively analyzed with empirical, analytical, and numerical approaches. This article presents the first experimental observation of the existence of the thermohydraulic quench back phenomenon in stagnant superfluid helium.</description><subject>Coils</subject><subject>Conductors</subject><subject>Dark matter</subject><subject>Design</subject><subject>Dipoles</subject><subject>Empirical analysis</subject><subject>Fluids</subject><subject>Helium</subject><subject>Liquid helium</subject><subject>Safety management</subject><subject>Superfluidity</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkEFLwzAYhoMoOKc_wFvAc-eXpGmS4wy6FQYiznPIkpR2dmtN10P_vRnb5f3ew8P3woPQM4EFIaBet8tvvaBA2YIxkJKqGzQjnMuMcsJvUwdOMkkpu0cPw7AHILnM-Qwtt3WIh66efLRj2zj8NYajq_Gbdb-4OWKLddf3IWJdap1606bo2uDxbsLrgMvyEd1Vth3C0_XO0c_H-1avs83nqtTLTeaoYKeskqGw3nsBXCgBFUBBReWE85QpxT3LZeA5oRVLGARXKG4LF4QPfpcQzubo5fK3j93fGIaT2XdjPKZJQ2XBQVGei0SRC-ViNwwxVKaPzcHGyRAwZ1PmbMqcTZmrKfYPCzZZQw</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Abdel Maksoud, W.</creator><creator>Durañona, U.</creator><creator>Allard, J.</creator><creator>Baudouy, B.</creator><creator>Berriaud, C.</creator><creator>Calvelli, V.</creator><creator>Denarie, L.</creator><creator>Dilasser, G.</creator><creator>Donga, T.</creator><creator>Drouen, Y.</creator><creator>Godon, P.</creator><creator>Godon, R.</creator><creator>Guihard, Q.</creator><creator>Jurie, S.</creator><creator>Juster, F.-P.</creator><creator>Lorin, C.</creator><creator>Lottin, J.-P.</creator><creator>Millot, J.-F.</creator><creator>Molinié, F.</creator><creator>Nunio, F.</creator><creator>Pontarollo, T.</creator><creator>Correia-Machado, R.</creator><creator>Scola, L.</creator><creator>Segrestan, L.</creator><creator>Solenne, N.</creator><creator>Stacchi, F.</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1306-5682</orcidid><orcidid>https://orcid.org/0000-0001-5286-6875</orcidid><orcidid>https://orcid.org/0000-0002-8523-9736</orcidid><orcidid>https://orcid.org/0009-0008-0211-4315</orcidid><orcidid>https://orcid.org/0000-0002-0256-4331</orcidid><orcidid>https://orcid.org/0009-0002-6538-671X</orcidid><orcidid>https://orcid.org/0000-0002-5253-769X</orcidid><orcidid>https://orcid.org/0000-0002-2485-2422</orcidid><orcidid>https://orcid.org/0000-0002-6108-176X</orcidid><orcidid>https://orcid.org/0000-0002-8556-7721</orcidid></search><sort><creationdate>20231001</creationdate><title>Thermohydraulic Quench Back in a Copper CICC Coil Cooled by He II</title><author>Abdel Maksoud, W. ; Durañona, U. ; Allard, J. ; Baudouy, B. ; Berriaud, C. ; Calvelli, V. ; Denarie, L. ; Dilasser, G. ; Donga, T. ; Drouen, Y. ; Godon, P. ; Godon, R. ; Guihard, Q. ; Jurie, S. ; Juster, F.-P. ; Lorin, C. ; Lottin, J.-P. ; Millot, J.-F. ; Molinié, F. ; Nunio, F. ; Pontarollo, T. ; Correia-Machado, R. ; Scola, L. ; Segrestan, L. ; Solenne, N. ; Stacchi, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-f8e6addd7057970f00627fc7cd23995d348e5412f36ad0ec695a6ce7dedbd2353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coils</topic><topic>Conductors</topic><topic>Dark matter</topic><topic>Design</topic><topic>Dipoles</topic><topic>Empirical analysis</topic><topic>Fluids</topic><topic>Helium</topic><topic>Liquid helium</topic><topic>Safety management</topic><topic>Superfluidity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdel Maksoud, W.</creatorcontrib><creatorcontrib>Durañona, U.</creatorcontrib><creatorcontrib>Allard, J.</creatorcontrib><creatorcontrib>Baudouy, B.</creatorcontrib><creatorcontrib>Berriaud, C.</creatorcontrib><creatorcontrib>Calvelli, V.</creatorcontrib><creatorcontrib>Denarie, L.</creatorcontrib><creatorcontrib>Dilasser, G.</creatorcontrib><creatorcontrib>Donga, T.</creatorcontrib><creatorcontrib>Drouen, Y.</creatorcontrib><creatorcontrib>Godon, P.</creatorcontrib><creatorcontrib>Godon, R.</creatorcontrib><creatorcontrib>Guihard, Q.</creatorcontrib><creatorcontrib>Jurie, S.</creatorcontrib><creatorcontrib>Juster, F.-P.</creatorcontrib><creatorcontrib>Lorin, C.</creatorcontrib><creatorcontrib>Lottin, J.-P.</creatorcontrib><creatorcontrib>Millot, J.-F.</creatorcontrib><creatorcontrib>Molinié, F.</creatorcontrib><creatorcontrib>Nunio, F.</creatorcontrib><creatorcontrib>Pontarollo, T.</creatorcontrib><creatorcontrib>Correia-Machado, R.</creatorcontrib><creatorcontrib>Scola, L.</creatorcontrib><creatorcontrib>Segrestan, L.</creatorcontrib><creatorcontrib>Solenne, N.</creatorcontrib><creatorcontrib>Stacchi, F.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdel Maksoud, W.</au><au>Durañona, U.</au><au>Allard, J.</au><au>Baudouy, B.</au><au>Berriaud, C.</au><au>Calvelli, V.</au><au>Denarie, L.</au><au>Dilasser, G.</au><au>Donga, T.</au><au>Drouen, Y.</au><au>Godon, P.</au><au>Godon, R.</au><au>Guihard, Q.</au><au>Jurie, S.</au><au>Juster, F.-P.</au><au>Lorin, C.</au><au>Lottin, J.-P.</au><au>Millot, J.-F.</au><au>Molinié, F.</au><au>Nunio, F.</au><au>Pontarollo, T.</au><au>Correia-Machado, R.</au><au>Scola, L.</au><au>Segrestan, L.</au><au>Solenne, N.</au><au>Stacchi, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermohydraulic Quench Back in a Copper CICC Coil Cooled by He II</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>33</volume><issue>7</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><abstract>The MAgnetized Disc and Mirror Axion eXperiment (MADMAX) project aims at detecting axion dark matter in the mass range of 100 μeV. To do so, a dipole detector magnet producing 100 T2m2 is needed. In the framework of an innovation partnership with the Max Planck Institute, CEA Paris-Saclay designed this large-scale magnet producing 9 T in a 1.35-m bore. The magnet is made of a cable in-conduit conductor, operating at 1.8 K. One of the main challenges of this novel design is to guarantee the magnet's safety toward quench management. In order to validate the magnet and conductor designs, a mock-up coil with a quench behavior scalable to MADMAX was designed, manufactured, and cold-tested. This article gives an overview of the main guidelines followed to design the prototype fully representative of the MADMAX quench behavior. The experimental facility, instrumentation, and protocol are presented. The main experimental results are given and extensively analyzed with empirical, analytical, and numerical approaches. This article presents the first experimental observation of the existence of the thermohydraulic quench back phenomenon in stagnant superfluid helium.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TASC.2023.3308829</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1306-5682</orcidid><orcidid>https://orcid.org/0000-0001-5286-6875</orcidid><orcidid>https://orcid.org/0000-0002-8523-9736</orcidid><orcidid>https://orcid.org/0009-0008-0211-4315</orcidid><orcidid>https://orcid.org/0000-0002-0256-4331</orcidid><orcidid>https://orcid.org/0009-0002-6538-671X</orcidid><orcidid>https://orcid.org/0000-0002-5253-769X</orcidid><orcidid>https://orcid.org/0000-0002-2485-2422</orcidid><orcidid>https://orcid.org/0000-0002-6108-176X</orcidid><orcidid>https://orcid.org/0000-0002-8556-7721</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2023-10, Vol.33 (7), p.1-14 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_proquest_journals_2865092547 |
source | IEEE Electronic Library (IEL) |
subjects | Coils Conductors Dark matter Design Dipoles Empirical analysis Fluids Helium Liquid helium Safety management Superfluidity |
title | Thermohydraulic Quench Back in a Copper CICC Coil Cooled by He II |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T19%3A40%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermohydraulic%20Quench%20Back%20in%20a%20Copper%20CICC%20Coil%20Cooled%20by%20He%20II&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Abdel%20Maksoud,%20W.&rft.date=2023-10-01&rft.volume=33&rft.issue=7&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1051-8223&rft.eissn=1558-2515&rft_id=info:doi/10.1109/TASC.2023.3308829&rft_dat=%3Cproquest_cross%3E2865092547%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865092547&rft_id=info:pmid/&rfr_iscdi=true |