TempEE: Temporal-Spatial Parallel Transformer for Radar Echo Extrapolation Beyond Autoregression
Meteorological radar reflectivity data (i.e., radar echo) significantly influences precipitation prediction. It can facilitate accurate and expeditious forecasting of short-term heavy rainfall bypassing the need for complex numerical weather prediction (NWP) models. In comparison to conventional mod...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2023, Vol.61, p.1-14 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 61 |
creator | Chen, Shengchao Shu, Ting Zhao, Huan Zhong, Guo Chen, Xunlai |
description | Meteorological radar reflectivity data (i.e., radar echo) significantly influences precipitation prediction. It can facilitate accurate and expeditious forecasting of short-term heavy rainfall bypassing the need for complex numerical weather prediction (NWP) models. In comparison to conventional models, deep-learning (DL)-based radar echo extrapolation algorithms exhibit higher effectiveness and efficiency. Nevertheless, the development of a reliable and generalized echo extrapolation algorithm is impeded by three primary challenges: cumulative error spreading, imprecise representation of sparsely distributed echoes, and inaccurate description of nonstationary motion processes. To tackle these challenges, this article proposes a novel radar echo extrapolation algorithm called temporal-spatial parallel transformer, referred to as TempEE. TempEE avoids using autoregression and instead employs a one-step forward strategy to prevent the cumulative error from spreading during the extrapolation process. Additionally, we propose the incorporation of a multilevel temporal-spatial attention mechanism to improve the algorithm's capability of capturing both global and local information while emphasizing task-related regions, including sparse echo representations, in an efficient manner. Furthermore, the algorithm extracts spatio-temporal representations from continuous echo images using a parallel encoder to model the nonstationary motion process for echo extrapolation. The superiority of our TempEE has been demonstrated in the context of the classic radar echo extrapolation task, utilizing a real-world dataset. Extensive experiments have further validated the efficacy and indispensability of various components within TempEE. |
doi_str_mv | 10.1109/TGRS.2023.3311510 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2865090868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10238744</ieee_id><sourcerecordid>2865090868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-f718e808092287e46c5517d3376717851180559fe3f6c9a9333bc3cc244a36203</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWKsfQPAQ8Lw1k3-beKuyVqGgtOt5jWlWW7abNdmC_fZmaQ-eHjO8N_P4IXQNZAJA9F05WywnlFA2YQxAADlBIxBCZURyfopGBLTMqNL0HF3EuCEEuIB8hD5Kt-2K4h4P6oNpsmVn-rVp8JtJU-MaXAbTxtqHrQs4CV6YlQm4sN8eF799MJ1vUsK3-MHtfbvC013vg_sKLsa0vURntWmiuzrqGL0_FeXjczZ_nb08TueZpZr3WZ2DcooooilVuePSitRvxVguc8iVAFBECF07VkurjWaMfVpmLeXcMEkJG6Pbw90u-J-di3218bvQppcVVVIQTZRUyQUHlw0-xuDqqgvrrQn7Ckg1gKwGkNUAsjqCTJmbQ2btnPvnp0zlnLM_jtpuDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865090868</pqid></control><display><type>article</type><title>TempEE: Temporal-Spatial Parallel Transformer for Radar Echo Extrapolation Beyond Autoregression</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Shengchao ; Shu, Ting ; Zhao, Huan ; Zhong, Guo ; Chen, Xunlai</creator><creatorcontrib>Chen, Shengchao ; Shu, Ting ; Zhao, Huan ; Zhong, Guo ; Chen, Xunlai</creatorcontrib><description>Meteorological radar reflectivity data (i.e., radar echo) significantly influences precipitation prediction. It can facilitate accurate and expeditious forecasting of short-term heavy rainfall bypassing the need for complex numerical weather prediction (NWP) models. In comparison to conventional models, deep-learning (DL)-based radar echo extrapolation algorithms exhibit higher effectiveness and efficiency. Nevertheless, the development of a reliable and generalized echo extrapolation algorithm is impeded by three primary challenges: cumulative error spreading, imprecise representation of sparsely distributed echoes, and inaccurate description of nonstationary motion processes. To tackle these challenges, this article proposes a novel radar echo extrapolation algorithm called temporal-spatial parallel transformer, referred to as TempEE. TempEE avoids using autoregression and instead employs a one-step forward strategy to prevent the cumulative error from spreading during the extrapolation process. Additionally, we propose the incorporation of a multilevel temporal-spatial attention mechanism to improve the algorithm's capability of capturing both global and local information while emphasizing task-related regions, including sparse echo representations, in an efficient manner. Furthermore, the algorithm extracts spatio-temporal representations from continuous echo images using a parallel encoder to model the nonstationary motion process for echo extrapolation. The superiority of our TempEE has been demonstrated in the context of the classic radar echo extrapolation task, utilizing a real-world dataset. Extensive experiments have further validated the efficacy and indispensability of various components within TempEE.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3311510</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Coders ; Deep learning (DL) ; Echoes ; Extrapolation ; Forecasting ; Meteorological radar ; Numerical models ; Numerical prediction ; Numerical weather forecasting ; Precipitation ; precipitation nowcasting ; Predictive models ; Radar ; radar echo extrapolation ; Radar echoes ; Rainfall ; Reflectance ; Regression analysis ; Representations ; transformer ; Transformers ; Weather forecasting</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-f718e808092287e46c5517d3376717851180559fe3f6c9a9333bc3cc244a36203</citedby><cites>FETCH-LOGICAL-c294t-f718e808092287e46c5517d3376717851180559fe3f6c9a9333bc3cc244a36203</cites><orcidid>0000-0002-6428-5645 ; 0000-0001-6906-2654 ; 0000-0001-9992-2264 ; 0000-0002-8630-7868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10238744$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,4028,27932,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10238744$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Shengchao</creatorcontrib><creatorcontrib>Shu, Ting</creatorcontrib><creatorcontrib>Zhao, Huan</creatorcontrib><creatorcontrib>Zhong, Guo</creatorcontrib><creatorcontrib>Chen, Xunlai</creatorcontrib><title>TempEE: Temporal-Spatial Parallel Transformer for Radar Echo Extrapolation Beyond Autoregression</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Meteorological radar reflectivity data (i.e., radar echo) significantly influences precipitation prediction. It can facilitate accurate and expeditious forecasting of short-term heavy rainfall bypassing the need for complex numerical weather prediction (NWP) models. In comparison to conventional models, deep-learning (DL)-based radar echo extrapolation algorithms exhibit higher effectiveness and efficiency. Nevertheless, the development of a reliable and generalized echo extrapolation algorithm is impeded by three primary challenges: cumulative error spreading, imprecise representation of sparsely distributed echoes, and inaccurate description of nonstationary motion processes. To tackle these challenges, this article proposes a novel radar echo extrapolation algorithm called temporal-spatial parallel transformer, referred to as TempEE. TempEE avoids using autoregression and instead employs a one-step forward strategy to prevent the cumulative error from spreading during the extrapolation process. Additionally, we propose the incorporation of a multilevel temporal-spatial attention mechanism to improve the algorithm's capability of capturing both global and local information while emphasizing task-related regions, including sparse echo representations, in an efficient manner. Furthermore, the algorithm extracts spatio-temporal representations from continuous echo images using a parallel encoder to model the nonstationary motion process for echo extrapolation. The superiority of our TempEE has been demonstrated in the context of the classic radar echo extrapolation task, utilizing a real-world dataset. Extensive experiments have further validated the efficacy and indispensability of various components within TempEE.</description><subject>Algorithms</subject><subject>Coders</subject><subject>Deep learning (DL)</subject><subject>Echoes</subject><subject>Extrapolation</subject><subject>Forecasting</subject><subject>Meteorological radar</subject><subject>Numerical models</subject><subject>Numerical prediction</subject><subject>Numerical weather forecasting</subject><subject>Precipitation</subject><subject>precipitation nowcasting</subject><subject>Predictive models</subject><subject>Radar</subject><subject>radar echo extrapolation</subject><subject>Radar echoes</subject><subject>Rainfall</subject><subject>Reflectance</subject><subject>Regression analysis</subject><subject>Representations</subject><subject>transformer</subject><subject>Transformers</subject><subject>Weather forecasting</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9LAzEQxYMoWKsfQPAQ8Lw1k3-beKuyVqGgtOt5jWlWW7abNdmC_fZmaQ-eHjO8N_P4IXQNZAJA9F05WywnlFA2YQxAADlBIxBCZURyfopGBLTMqNL0HF3EuCEEuIB8hD5Kt-2K4h4P6oNpsmVn-rVp8JtJU-MaXAbTxtqHrQs4CV6YlQm4sN8eF799MJ1vUsK3-MHtfbvC013vg_sKLsa0vURntWmiuzrqGL0_FeXjczZ_nb08TueZpZr3WZ2DcooooilVuePSitRvxVguc8iVAFBECF07VkurjWaMfVpmLeXcMEkJG6Pbw90u-J-di3218bvQppcVVVIQTZRUyQUHlw0-xuDqqgvrrQn7Ckg1gKwGkNUAsjqCTJmbQ2btnPvnp0zlnLM_jtpuDA</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Chen, Shengchao</creator><creator>Shu, Ting</creator><creator>Zhao, Huan</creator><creator>Zhong, Guo</creator><creator>Chen, Xunlai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6428-5645</orcidid><orcidid>https://orcid.org/0000-0001-6906-2654</orcidid><orcidid>https://orcid.org/0000-0001-9992-2264</orcidid><orcidid>https://orcid.org/0000-0002-8630-7868</orcidid></search><sort><creationdate>2023</creationdate><title>TempEE: Temporal-Spatial Parallel Transformer for Radar Echo Extrapolation Beyond Autoregression</title><author>Chen, Shengchao ; Shu, Ting ; Zhao, Huan ; Zhong, Guo ; Chen, Xunlai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-f718e808092287e46c5517d3376717851180559fe3f6c9a9333bc3cc244a36203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Coders</topic><topic>Deep learning (DL)</topic><topic>Echoes</topic><topic>Extrapolation</topic><topic>Forecasting</topic><topic>Meteorological radar</topic><topic>Numerical models</topic><topic>Numerical prediction</topic><topic>Numerical weather forecasting</topic><topic>Precipitation</topic><topic>precipitation nowcasting</topic><topic>Predictive models</topic><topic>Radar</topic><topic>radar echo extrapolation</topic><topic>Radar echoes</topic><topic>Rainfall</topic><topic>Reflectance</topic><topic>Regression analysis</topic><topic>Representations</topic><topic>transformer</topic><topic>Transformers</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shengchao</creatorcontrib><creatorcontrib>Shu, Ting</creatorcontrib><creatorcontrib>Zhao, Huan</creatorcontrib><creatorcontrib>Zhong, Guo</creatorcontrib><creatorcontrib>Chen, Xunlai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Shengchao</au><au>Shu, Ting</au><au>Zhao, Huan</au><au>Zhong, Guo</au><au>Chen, Xunlai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TempEE: Temporal-Spatial Parallel Transformer for Radar Echo Extrapolation Beyond Autoregression</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Meteorological radar reflectivity data (i.e., radar echo) significantly influences precipitation prediction. It can facilitate accurate and expeditious forecasting of short-term heavy rainfall bypassing the need for complex numerical weather prediction (NWP) models. In comparison to conventional models, deep-learning (DL)-based radar echo extrapolation algorithms exhibit higher effectiveness and efficiency. Nevertheless, the development of a reliable and generalized echo extrapolation algorithm is impeded by three primary challenges: cumulative error spreading, imprecise representation of sparsely distributed echoes, and inaccurate description of nonstationary motion processes. To tackle these challenges, this article proposes a novel radar echo extrapolation algorithm called temporal-spatial parallel transformer, referred to as TempEE. TempEE avoids using autoregression and instead employs a one-step forward strategy to prevent the cumulative error from spreading during the extrapolation process. Additionally, we propose the incorporation of a multilevel temporal-spatial attention mechanism to improve the algorithm's capability of capturing both global and local information while emphasizing task-related regions, including sparse echo representations, in an efficient manner. Furthermore, the algorithm extracts spatio-temporal representations from continuous echo images using a parallel encoder to model the nonstationary motion process for echo extrapolation. The superiority of our TempEE has been demonstrated in the context of the classic radar echo extrapolation task, utilizing a real-world dataset. Extensive experiments have further validated the efficacy and indispensability of various components within TempEE.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3311510</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6428-5645</orcidid><orcidid>https://orcid.org/0000-0001-6906-2654</orcidid><orcidid>https://orcid.org/0000-0001-9992-2264</orcidid><orcidid>https://orcid.org/0000-0002-8630-7868</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-14 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_2865090868 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Coders Deep learning (DL) Echoes Extrapolation Forecasting Meteorological radar Numerical models Numerical prediction Numerical weather forecasting Precipitation precipitation nowcasting Predictive models Radar radar echo extrapolation Radar echoes Rainfall Reflectance Regression analysis Representations transformer Transformers Weather forecasting |
title | TempEE: Temporal-Spatial Parallel Transformer for Radar Echo Extrapolation Beyond Autoregression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T10%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TempEE:%20Temporal-Spatial%20Parallel%20Transformer%20for%20Radar%20Echo%20Extrapolation%20Beyond%20Autoregression&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Chen,%20Shengchao&rft.date=2023&rft.volume=61&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3311510&rft_dat=%3Cproquest_RIE%3E2865090868%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865090868&rft_id=info:pmid/&rft_ieee_id=10238744&rfr_iscdi=true |