TempEE: Temporal-Spatial Parallel Transformer for Radar Echo Extrapolation Beyond Autoregression

Meteorological radar reflectivity data (i.e., radar echo) significantly influences precipitation prediction. It can facilitate accurate and expeditious forecasting of short-term heavy rainfall bypassing the need for complex numerical weather prediction (NWP) models. In comparison to conventional mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2023, Vol.61, p.1-14
Hauptverfasser: Chen, Shengchao, Shu, Ting, Zhao, Huan, Zhong, Guo, Chen, Xunlai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 61
creator Chen, Shengchao
Shu, Ting
Zhao, Huan
Zhong, Guo
Chen, Xunlai
description Meteorological radar reflectivity data (i.e., radar echo) significantly influences precipitation prediction. It can facilitate accurate and expeditious forecasting of short-term heavy rainfall bypassing the need for complex numerical weather prediction (NWP) models. In comparison to conventional models, deep-learning (DL)-based radar echo extrapolation algorithms exhibit higher effectiveness and efficiency. Nevertheless, the development of a reliable and generalized echo extrapolation algorithm is impeded by three primary challenges: cumulative error spreading, imprecise representation of sparsely distributed echoes, and inaccurate description of nonstationary motion processes. To tackle these challenges, this article proposes a novel radar echo extrapolation algorithm called temporal-spatial parallel transformer, referred to as TempEE. TempEE avoids using autoregression and instead employs a one-step forward strategy to prevent the cumulative error from spreading during the extrapolation process. Additionally, we propose the incorporation of a multilevel temporal-spatial attention mechanism to improve the algorithm's capability of capturing both global and local information while emphasizing task-related regions, including sparse echo representations, in an efficient manner. Furthermore, the algorithm extracts spatio-temporal representations from continuous echo images using a parallel encoder to model the nonstationary motion process for echo extrapolation. The superiority of our TempEE has been demonstrated in the context of the classic radar echo extrapolation task, utilizing a real-world dataset. Extensive experiments have further validated the efficacy and indispensability of various components within TempEE.
doi_str_mv 10.1109/TGRS.2023.3311510
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2865090868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10238744</ieee_id><sourcerecordid>2865090868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-f718e808092287e46c5517d3376717851180559fe3f6c9a9333bc3cc244a36203</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWKsfQPAQ8Lw1k3-beKuyVqGgtOt5jWlWW7abNdmC_fZmaQ-eHjO8N_P4IXQNZAJA9F05WywnlFA2YQxAADlBIxBCZURyfopGBLTMqNL0HF3EuCEEuIB8hD5Kt-2K4h4P6oNpsmVn-rVp8JtJU-MaXAbTxtqHrQs4CV6YlQm4sN8eF799MJ1vUsK3-MHtfbvC013vg_sKLsa0vURntWmiuzrqGL0_FeXjczZ_nb08TueZpZr3WZ2DcooooilVuePSitRvxVguc8iVAFBECF07VkurjWaMfVpmLeXcMEkJG6Pbw90u-J-di3218bvQppcVVVIQTZRUyQUHlw0-xuDqqgvrrQn7Ckg1gKwGkNUAsjqCTJmbQ2btnPvnp0zlnLM_jtpuDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865090868</pqid></control><display><type>article</type><title>TempEE: Temporal-Spatial Parallel Transformer for Radar Echo Extrapolation Beyond Autoregression</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Shengchao ; Shu, Ting ; Zhao, Huan ; Zhong, Guo ; Chen, Xunlai</creator><creatorcontrib>Chen, Shengchao ; Shu, Ting ; Zhao, Huan ; Zhong, Guo ; Chen, Xunlai</creatorcontrib><description>Meteorological radar reflectivity data (i.e., radar echo) significantly influences precipitation prediction. It can facilitate accurate and expeditious forecasting of short-term heavy rainfall bypassing the need for complex numerical weather prediction (NWP) models. In comparison to conventional models, deep-learning (DL)-based radar echo extrapolation algorithms exhibit higher effectiveness and efficiency. Nevertheless, the development of a reliable and generalized echo extrapolation algorithm is impeded by three primary challenges: cumulative error spreading, imprecise representation of sparsely distributed echoes, and inaccurate description of nonstationary motion processes. To tackle these challenges, this article proposes a novel radar echo extrapolation algorithm called temporal-spatial parallel transformer, referred to as TempEE. TempEE avoids using autoregression and instead employs a one-step forward strategy to prevent the cumulative error from spreading during the extrapolation process. Additionally, we propose the incorporation of a multilevel temporal-spatial attention mechanism to improve the algorithm's capability of capturing both global and local information while emphasizing task-related regions, including sparse echo representations, in an efficient manner. Furthermore, the algorithm extracts spatio-temporal representations from continuous echo images using a parallel encoder to model the nonstationary motion process for echo extrapolation. The superiority of our TempEE has been demonstrated in the context of the classic radar echo extrapolation task, utilizing a real-world dataset. Extensive experiments have further validated the efficacy and indispensability of various components within TempEE.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3311510</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Coders ; Deep learning (DL) ; Echoes ; Extrapolation ; Forecasting ; Meteorological radar ; Numerical models ; Numerical prediction ; Numerical weather forecasting ; Precipitation ; precipitation nowcasting ; Predictive models ; Radar ; radar echo extrapolation ; Radar echoes ; Rainfall ; Reflectance ; Regression analysis ; Representations ; transformer ; Transformers ; Weather forecasting</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-f718e808092287e46c5517d3376717851180559fe3f6c9a9333bc3cc244a36203</citedby><cites>FETCH-LOGICAL-c294t-f718e808092287e46c5517d3376717851180559fe3f6c9a9333bc3cc244a36203</cites><orcidid>0000-0002-6428-5645 ; 0000-0001-6906-2654 ; 0000-0001-9992-2264 ; 0000-0002-8630-7868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10238744$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,4028,27932,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10238744$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Shengchao</creatorcontrib><creatorcontrib>Shu, Ting</creatorcontrib><creatorcontrib>Zhao, Huan</creatorcontrib><creatorcontrib>Zhong, Guo</creatorcontrib><creatorcontrib>Chen, Xunlai</creatorcontrib><title>TempEE: Temporal-Spatial Parallel Transformer for Radar Echo Extrapolation Beyond Autoregression</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Meteorological radar reflectivity data (i.e., radar echo) significantly influences precipitation prediction. It can facilitate accurate and expeditious forecasting of short-term heavy rainfall bypassing the need for complex numerical weather prediction (NWP) models. In comparison to conventional models, deep-learning (DL)-based radar echo extrapolation algorithms exhibit higher effectiveness and efficiency. Nevertheless, the development of a reliable and generalized echo extrapolation algorithm is impeded by three primary challenges: cumulative error spreading, imprecise representation of sparsely distributed echoes, and inaccurate description of nonstationary motion processes. To tackle these challenges, this article proposes a novel radar echo extrapolation algorithm called temporal-spatial parallel transformer, referred to as TempEE. TempEE avoids using autoregression and instead employs a one-step forward strategy to prevent the cumulative error from spreading during the extrapolation process. Additionally, we propose the incorporation of a multilevel temporal-spatial attention mechanism to improve the algorithm's capability of capturing both global and local information while emphasizing task-related regions, including sparse echo representations, in an efficient manner. Furthermore, the algorithm extracts spatio-temporal representations from continuous echo images using a parallel encoder to model the nonstationary motion process for echo extrapolation. The superiority of our TempEE has been demonstrated in the context of the classic radar echo extrapolation task, utilizing a real-world dataset. Extensive experiments have further validated the efficacy and indispensability of various components within TempEE.</description><subject>Algorithms</subject><subject>Coders</subject><subject>Deep learning (DL)</subject><subject>Echoes</subject><subject>Extrapolation</subject><subject>Forecasting</subject><subject>Meteorological radar</subject><subject>Numerical models</subject><subject>Numerical prediction</subject><subject>Numerical weather forecasting</subject><subject>Precipitation</subject><subject>precipitation nowcasting</subject><subject>Predictive models</subject><subject>Radar</subject><subject>radar echo extrapolation</subject><subject>Radar echoes</subject><subject>Rainfall</subject><subject>Reflectance</subject><subject>Regression analysis</subject><subject>Representations</subject><subject>transformer</subject><subject>Transformers</subject><subject>Weather forecasting</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9LAzEQxYMoWKsfQPAQ8Lw1k3-beKuyVqGgtOt5jWlWW7abNdmC_fZmaQ-eHjO8N_P4IXQNZAJA9F05WywnlFA2YQxAADlBIxBCZURyfopGBLTMqNL0HF3EuCEEuIB8hD5Kt-2K4h4P6oNpsmVn-rVp8JtJU-MaXAbTxtqHrQs4CV6YlQm4sN8eF799MJ1vUsK3-MHtfbvC013vg_sKLsa0vURntWmiuzrqGL0_FeXjczZ_nb08TueZpZr3WZ2DcooooilVuePSitRvxVguc8iVAFBECF07VkurjWaMfVpmLeXcMEkJG6Pbw90u-J-di3218bvQppcVVVIQTZRUyQUHlw0-xuDqqgvrrQn7Ckg1gKwGkNUAsjqCTJmbQ2btnPvnp0zlnLM_jtpuDA</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Chen, Shengchao</creator><creator>Shu, Ting</creator><creator>Zhao, Huan</creator><creator>Zhong, Guo</creator><creator>Chen, Xunlai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6428-5645</orcidid><orcidid>https://orcid.org/0000-0001-6906-2654</orcidid><orcidid>https://orcid.org/0000-0001-9992-2264</orcidid><orcidid>https://orcid.org/0000-0002-8630-7868</orcidid></search><sort><creationdate>2023</creationdate><title>TempEE: Temporal-Spatial Parallel Transformer for Radar Echo Extrapolation Beyond Autoregression</title><author>Chen, Shengchao ; Shu, Ting ; Zhao, Huan ; Zhong, Guo ; Chen, Xunlai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-f718e808092287e46c5517d3376717851180559fe3f6c9a9333bc3cc244a36203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Coders</topic><topic>Deep learning (DL)</topic><topic>Echoes</topic><topic>Extrapolation</topic><topic>Forecasting</topic><topic>Meteorological radar</topic><topic>Numerical models</topic><topic>Numerical prediction</topic><topic>Numerical weather forecasting</topic><topic>Precipitation</topic><topic>precipitation nowcasting</topic><topic>Predictive models</topic><topic>Radar</topic><topic>radar echo extrapolation</topic><topic>Radar echoes</topic><topic>Rainfall</topic><topic>Reflectance</topic><topic>Regression analysis</topic><topic>Representations</topic><topic>transformer</topic><topic>Transformers</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shengchao</creatorcontrib><creatorcontrib>Shu, Ting</creatorcontrib><creatorcontrib>Zhao, Huan</creatorcontrib><creatorcontrib>Zhong, Guo</creatorcontrib><creatorcontrib>Chen, Xunlai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Shengchao</au><au>Shu, Ting</au><au>Zhao, Huan</au><au>Zhong, Guo</au><au>Chen, Xunlai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TempEE: Temporal-Spatial Parallel Transformer for Radar Echo Extrapolation Beyond Autoregression</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Meteorological radar reflectivity data (i.e., radar echo) significantly influences precipitation prediction. It can facilitate accurate and expeditious forecasting of short-term heavy rainfall bypassing the need for complex numerical weather prediction (NWP) models. In comparison to conventional models, deep-learning (DL)-based radar echo extrapolation algorithms exhibit higher effectiveness and efficiency. Nevertheless, the development of a reliable and generalized echo extrapolation algorithm is impeded by three primary challenges: cumulative error spreading, imprecise representation of sparsely distributed echoes, and inaccurate description of nonstationary motion processes. To tackle these challenges, this article proposes a novel radar echo extrapolation algorithm called temporal-spatial parallel transformer, referred to as TempEE. TempEE avoids using autoregression and instead employs a one-step forward strategy to prevent the cumulative error from spreading during the extrapolation process. Additionally, we propose the incorporation of a multilevel temporal-spatial attention mechanism to improve the algorithm's capability of capturing both global and local information while emphasizing task-related regions, including sparse echo representations, in an efficient manner. Furthermore, the algorithm extracts spatio-temporal representations from continuous echo images using a parallel encoder to model the nonstationary motion process for echo extrapolation. The superiority of our TempEE has been demonstrated in the context of the classic radar echo extrapolation task, utilizing a real-world dataset. Extensive experiments have further validated the efficacy and indispensability of various components within TempEE.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3311510</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6428-5645</orcidid><orcidid>https://orcid.org/0000-0001-6906-2654</orcidid><orcidid>https://orcid.org/0000-0001-9992-2264</orcidid><orcidid>https://orcid.org/0000-0002-8630-7868</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-14
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2865090868
source IEEE Electronic Library (IEL)
subjects Algorithms
Coders
Deep learning (DL)
Echoes
Extrapolation
Forecasting
Meteorological radar
Numerical models
Numerical prediction
Numerical weather forecasting
Precipitation
precipitation nowcasting
Predictive models
Radar
radar echo extrapolation
Radar echoes
Rainfall
Reflectance
Regression analysis
Representations
transformer
Transformers
Weather forecasting
title TempEE: Temporal-Spatial Parallel Transformer for Radar Echo Extrapolation Beyond Autoregression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T10%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TempEE:%20Temporal-Spatial%20Parallel%20Transformer%20for%20Radar%20Echo%20Extrapolation%20Beyond%20Autoregression&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Chen,%20Shengchao&rft.date=2023&rft.volume=61&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3311510&rft_dat=%3Cproquest_RIE%3E2865090868%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865090868&rft_id=info:pmid/&rft_ieee_id=10238744&rfr_iscdi=true