The Gravitational Path Integral for N=4 BPS Black Holes from Black Hole Microstate Counting

We use the exact degeneracy formula of single-centred 1 4 BPS dyonic black holes with unit torsion in 4D N = 4 toroidally compactified heterotic string theory to improve on the existing formulation of the corresponding quantum entropy function obtained using supersymmetric localization. The result t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Henri Poincare 2023-10, Vol.24 (10), p.3305-3346
Hauptverfasser: Cardoso, Gabriel Lopes, Kidambi, Abhiram, Nampuri, Suresh, Reys, Valentin, Rosselló, Martí
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3346
container_issue 10
container_start_page 3305
container_title Annales Henri Poincare
container_volume 24
creator Cardoso, Gabriel Lopes
Kidambi, Abhiram
Nampuri, Suresh
Reys, Valentin
Rosselló, Martí
description We use the exact degeneracy formula of single-centred 1 4 BPS dyonic black holes with unit torsion in 4D N = 4 toroidally compactified heterotic string theory to improve on the existing formulation of the corresponding quantum entropy function obtained using supersymmetric localization. The result takes the form of a sum over Euclidean backgrounds including orbifolds of the Euclidean AdS 2 × S 2 attractor geometry. Using an N = 2 formalism, we determine the explicit form of the Abelian gauge potentials supporting these backgrounds. We further show how a rewriting of the degeneracy formula is amenable, at a semi-classical level, to a gravitational interpretation involving 2D Euclidean wormholes. This alternative picture is useful to elucidate different aspects of the gravitational path integral capturing the microstate degeneracies. We also comment on the relation between the associated 1D holographic models.
doi_str_mv 10.1007/s00023-023-01297-y
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2864954764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864954764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-ef94315bbd3f5fc4697ef23ed62ba1b95ef5740a2c7ba218a08fb3a81664126c3</originalsourceid><addsrcrecordid>eNp9kM1PwjAYxhujiYj-A56aePIw7dfa7eABiAIJKol48tB0o4XhWLEdJPz3dsygJw9v3o_8nid5HwCuMbrDCIl7jxAiNDoUJqmI9ieggxlhEeIcnx5nKs7BhfcrFKiEph3wMVtqOHRqV9SqLmylSjhV9RKOq1ovXNiMdfDlgcH-9A32S5V_wpEttYfG2fWfA3wucmd9MNFwYLdVXVSLS3BmVOn11U_vgvenx9lgFE1eh-NBbxLlNKZ1pE3KKI6zbE5NbHLGU6ENoXrOSaZwlsbaxIIhRXKRKYIThRKTUZVgzhkmPKddcNv6LlUpN65YK7eXVhVy1JvI5oZoIjhGfIcDe9OyG2e_ttrXcmW3LrztJUk4S2MmOAsUaanmJ--0OdpiJJvAZRu4PFQTuNwHEW1FPsDVQrtf639U37SugbQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864954764</pqid></control><display><type>article</type><title>The Gravitational Path Integral for N=4 BPS Black Holes from Black Hole Microstate Counting</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cardoso, Gabriel Lopes ; Kidambi, Abhiram ; Nampuri, Suresh ; Reys, Valentin ; Rosselló, Martí</creator><creatorcontrib>Cardoso, Gabriel Lopes ; Kidambi, Abhiram ; Nampuri, Suresh ; Reys, Valentin ; Rosselló, Martí</creatorcontrib><description>We use the exact degeneracy formula of single-centred 1 4 BPS dyonic black holes with unit torsion in 4D N = 4 toroidally compactified heterotic string theory to improve on the existing formulation of the corresponding quantum entropy function obtained using supersymmetric localization. The result takes the form of a sum over Euclidean backgrounds including orbifolds of the Euclidean AdS 2 × S 2 attractor geometry. Using an N = 2 formalism, we determine the explicit form of the Abelian gauge potentials supporting these backgrounds. We further show how a rewriting of the degeneracy formula is amenable, at a semi-classical level, to a gravitational interpretation involving 2D Euclidean wormholes. This alternative picture is useful to elucidate different aspects of the gravitational path integral capturing the microstate degeneracies. We also comment on the relation between the associated 1D holographic models.</description><identifier>ISSN: 1424-0637</identifier><identifier>EISSN: 1424-0661</identifier><identifier>DOI: 10.1007/s00023-023-01297-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Black holes ; Classical and Quantum Gravitation ; Dynamical Systems and Ergodic Theory ; Elementary Particles ; Euclidean geometry ; High Energy Physics - Theory ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Original Paper ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; String theory ; Theoretical</subject><ispartof>Annales Henri Poincare, 2023-10, Vol.24 (10), p.3305-3346</ispartof><rights>Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-ef94315bbd3f5fc4697ef23ed62ba1b95ef5740a2c7ba218a08fb3a81664126c3</citedby><cites>FETCH-LOGICAL-c353t-ef94315bbd3f5fc4697ef23ed62ba1b95ef5740a2c7ba218a08fb3a81664126c3</cites><orcidid>0000-0003-1129-3729</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00023-023-01297-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00023-023-01297-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03876106$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cardoso, Gabriel Lopes</creatorcontrib><creatorcontrib>Kidambi, Abhiram</creatorcontrib><creatorcontrib>Nampuri, Suresh</creatorcontrib><creatorcontrib>Reys, Valentin</creatorcontrib><creatorcontrib>Rosselló, Martí</creatorcontrib><title>The Gravitational Path Integral for N=4 BPS Black Holes from Black Hole Microstate Counting</title><title>Annales Henri Poincare</title><addtitle>Ann. Henri Poincaré</addtitle><description>We use the exact degeneracy formula of single-centred 1 4 BPS dyonic black holes with unit torsion in 4D N = 4 toroidally compactified heterotic string theory to improve on the existing formulation of the corresponding quantum entropy function obtained using supersymmetric localization. The result takes the form of a sum over Euclidean backgrounds including orbifolds of the Euclidean AdS 2 × S 2 attractor geometry. Using an N = 2 formalism, we determine the explicit form of the Abelian gauge potentials supporting these backgrounds. We further show how a rewriting of the degeneracy formula is amenable, at a semi-classical level, to a gravitational interpretation involving 2D Euclidean wormholes. This alternative picture is useful to elucidate different aspects of the gravitational path integral capturing the microstate degeneracies. We also comment on the relation between the associated 1D holographic models.</description><subject>Black holes</subject><subject>Classical and Quantum Gravitation</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Elementary Particles</subject><subject>Euclidean geometry</subject><subject>High Energy Physics - Theory</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>String theory</subject><subject>Theoretical</subject><issn>1424-0637</issn><issn>1424-0661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1PwjAYxhujiYj-A56aePIw7dfa7eABiAIJKol48tB0o4XhWLEdJPz3dsygJw9v3o_8nid5HwCuMbrDCIl7jxAiNDoUJqmI9ieggxlhEeIcnx5nKs7BhfcrFKiEph3wMVtqOHRqV9SqLmylSjhV9RKOq1ovXNiMdfDlgcH-9A32S5V_wpEttYfG2fWfA3wucmd9MNFwYLdVXVSLS3BmVOn11U_vgvenx9lgFE1eh-NBbxLlNKZ1pE3KKI6zbE5NbHLGU6ENoXrOSaZwlsbaxIIhRXKRKYIThRKTUZVgzhkmPKddcNv6LlUpN65YK7eXVhVy1JvI5oZoIjhGfIcDe9OyG2e_ttrXcmW3LrztJUk4S2MmOAsUaanmJ--0OdpiJJvAZRu4PFQTuNwHEW1FPsDVQrtf639U37SugbQ</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Cardoso, Gabriel Lopes</creator><creator>Kidambi, Abhiram</creator><creator>Nampuri, Suresh</creator><creator>Reys, Valentin</creator><creator>Rosselló, Martí</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1129-3729</orcidid></search><sort><creationdate>20231001</creationdate><title>The Gravitational Path Integral for N=4 BPS Black Holes from Black Hole Microstate Counting</title><author>Cardoso, Gabriel Lopes ; Kidambi, Abhiram ; Nampuri, Suresh ; Reys, Valentin ; Rosselló, Martí</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-ef94315bbd3f5fc4697ef23ed62ba1b95ef5740a2c7ba218a08fb3a81664126c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Black holes</topic><topic>Classical and Quantum Gravitation</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Elementary Particles</topic><topic>Euclidean geometry</topic><topic>High Energy Physics - Theory</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>String theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cardoso, Gabriel Lopes</creatorcontrib><creatorcontrib>Kidambi, Abhiram</creatorcontrib><creatorcontrib>Nampuri, Suresh</creatorcontrib><creatorcontrib>Reys, Valentin</creatorcontrib><creatorcontrib>Rosselló, Martí</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Annales Henri Poincare</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cardoso, Gabriel Lopes</au><au>Kidambi, Abhiram</au><au>Nampuri, Suresh</au><au>Reys, Valentin</au><au>Rosselló, Martí</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Gravitational Path Integral for N=4 BPS Black Holes from Black Hole Microstate Counting</atitle><jtitle>Annales Henri Poincare</jtitle><stitle>Ann. Henri Poincaré</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>24</volume><issue>10</issue><spage>3305</spage><epage>3346</epage><pages>3305-3346</pages><issn>1424-0637</issn><eissn>1424-0661</eissn><abstract>We use the exact degeneracy formula of single-centred 1 4 BPS dyonic black holes with unit torsion in 4D N = 4 toroidally compactified heterotic string theory to improve on the existing formulation of the corresponding quantum entropy function obtained using supersymmetric localization. The result takes the form of a sum over Euclidean backgrounds including orbifolds of the Euclidean AdS 2 × S 2 attractor geometry. Using an N = 2 formalism, we determine the explicit form of the Abelian gauge potentials supporting these backgrounds. We further show how a rewriting of the degeneracy formula is amenable, at a semi-classical level, to a gravitational interpretation involving 2D Euclidean wormholes. This alternative picture is useful to elucidate different aspects of the gravitational path integral capturing the microstate degeneracies. We also comment on the relation between the associated 1D holographic models.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00023-023-01297-y</doi><tpages>42</tpages><orcidid>https://orcid.org/0000-0003-1129-3729</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1424-0637
ispartof Annales Henri Poincare, 2023-10, Vol.24 (10), p.3305-3346
issn 1424-0637
1424-0661
language eng
recordid cdi_proquest_journals_2864954764
source SpringerLink Journals - AutoHoldings
subjects Black holes
Classical and Quantum Gravitation
Dynamical Systems and Ergodic Theory
Elementary Particles
Euclidean geometry
High Energy Physics - Theory
Mathematical and Computational Physics
Mathematical Methods in Physics
Original Paper
Physics
Physics and Astronomy
Quantum Field Theory
Quantum Physics
Relativity Theory
String theory
Theoretical
title The Gravitational Path Integral for N=4 BPS Black Holes from Black Hole Microstate Counting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A23%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Gravitational%20Path%20Integral%20for%20N=4%20BPS%20Black%20Holes%20from%20Black%20Hole%20Microstate%20Counting&rft.jtitle=Annales%20Henri%20Poincare&rft.au=Cardoso,%20Gabriel%20Lopes&rft.date=2023-10-01&rft.volume=24&rft.issue=10&rft.spage=3305&rft.epage=3346&rft.pages=3305-3346&rft.issn=1424-0637&rft.eissn=1424-0661&rft_id=info:doi/10.1007/s00023-023-01297-y&rft_dat=%3Cproquest_hal_p%3E2864954764%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864954764&rft_id=info:pmid/&rfr_iscdi=true