Construction of Singleton-Type Optimal LRCs from Existing LRCs and Near-MDS Codes

Modern large scale distributed storage systems play a central role in data center and cloud storage, while node failure in data center is common. The lost data in failure node must be recovered efficiently. Locally repairable codes (LRCs) are designed to solve this problem. The locality of an LRC is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2023/08/01, Vol.E106.A(8), pp.1051-1056
Hauptverfasser: FU, Qiang, WANG, Buhong, LI, Ruihu, YANG, Ruipan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1056
container_issue 8
container_start_page 1051
container_title IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
container_volume E106.A
creator FU, Qiang
WANG, Buhong
LI, Ruihu
YANG, Ruipan
description Modern large scale distributed storage systems play a central role in data center and cloud storage, while node failure in data center is common. The lost data in failure node must be recovered efficiently. Locally repairable codes (LRCs) are designed to solve this problem. The locality of an LRC is the number of nodes that participate in recovering the lost data from node failure, which characterizes the repair efficiency. An LRC is called optimal if its minimum distance attains Singleton-type upper bound [1]. In this paper, using basic techniques of linear algebra over finite field, infinite optimal LRCs over extension fields are derived from a given optimal LRC over base field(or small field). Next, this paper investigates the relation between near-MDS codes with some constraints and LRCs, further, proposes an algorithm to determine locality of dual of a given linear code. Finally, based on near-MDS codes and the proposed algorithm, those obtained optimal LRCs are shown.
doi_str_mv 10.1587/transfun.2022EAP1107
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2864890145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864890145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-a5f0ffaead9460ab8dc87f4d1f7e9fc2a40a657c01929b0e9cee87f96569cf773</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwBywisU6xEye2l1UID6lQaMvach27pErtYDsS_XuCQgurGY3OmdFcAK4RnKCMktvghPG6M5MEJkk5fUUIkhMwQgRnMUpTcgpGkKE8phmk5-DC-y2EiCYIj8BbYY0PrpOhtiayOlrWZtOoYE282rcqmreh3okmmi0KH2lnd1H5VfvQQ8NImCp6UcLFz3fLqLCV8pfgTIvGq6vfOgbv9-WqeIxn84enYjqLJSZJiEWmodZCiYrhHIo1rSQlGldIE8W0TASGIs-IhIglbA0Vk0r1AMuznElNSDoGN8Pe1tnPTvnAt7Zzpj_JE5pjyiDCWU_hgZLOeu-U5q3rH3J7jiD_CY8fwuP_wuu1xaBtfRAbdZSEC7Vs1J9UIpjzKaeH5t-SIyw_hOPKpN_0u4HQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864890145</pqid></control><display><type>article</type><title>Construction of Singleton-Type Optimal LRCs from Existing LRCs and Near-MDS Codes</title><source>J-STAGE Free</source><creator>FU, Qiang ; WANG, Buhong ; LI, Ruihu ; YANG, Ruipan</creator><creatorcontrib>FU, Qiang ; WANG, Buhong ; LI, Ruihu ; YANG, Ruipan</creatorcontrib><description>Modern large scale distributed storage systems play a central role in data center and cloud storage, while node failure in data center is common. The lost data in failure node must be recovered efficiently. Locally repairable codes (LRCs) are designed to solve this problem. The locality of an LRC is the number of nodes that participate in recovering the lost data from node failure, which characterizes the repair efficiency. An LRC is called optimal if its minimum distance attains Singleton-type upper bound [1]. In this paper, using basic techniques of linear algebra over finite field, infinite optimal LRCs over extension fields are derived from a given optimal LRC over base field(or small field). Next, this paper investigates the relation between near-MDS codes with some constraints and LRCs, further, proposes an algorithm to determine locality of dual of a given linear code. Finally, based on near-MDS codes and the proposed algorithm, those obtained optimal LRCs are shown.</description><identifier>ISSN: 0916-8508</identifier><identifier>EISSN: 1745-1337</identifier><identifier>DOI: 10.1587/transfun.2022EAP1107</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Algorithms ; Cloud computing ; Codes ; Computer centers ; Data centers ; Data integrity ; Data storage ; extension field ; Failure ; Fields (mathematics) ; Linear algebra ; near-MDS code ; Nodes ; optimal locally repairable codes ; Singleton-type bound ; Storage systems ; Upper bounds</subject><ispartof>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2023/08/01, Vol.E106.A(8), pp.1051-1056</ispartof><rights>2023 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c472t-a5f0ffaead9460ab8dc87f4d1f7e9fc2a40a657c01929b0e9cee87f96569cf773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,1879,27907,27908</link.rule.ids></links><search><creatorcontrib>FU, Qiang</creatorcontrib><creatorcontrib>WANG, Buhong</creatorcontrib><creatorcontrib>LI, Ruihu</creatorcontrib><creatorcontrib>YANG, Ruipan</creatorcontrib><title>Construction of Singleton-Type Optimal LRCs from Existing LRCs and Near-MDS Codes</title><title>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</title><addtitle>IEICE Trans. Fundamentals</addtitle><description>Modern large scale distributed storage systems play a central role in data center and cloud storage, while node failure in data center is common. The lost data in failure node must be recovered efficiently. Locally repairable codes (LRCs) are designed to solve this problem. The locality of an LRC is the number of nodes that participate in recovering the lost data from node failure, which characterizes the repair efficiency. An LRC is called optimal if its minimum distance attains Singleton-type upper bound [1]. In this paper, using basic techniques of linear algebra over finite field, infinite optimal LRCs over extension fields are derived from a given optimal LRC over base field(or small field). Next, this paper investigates the relation between near-MDS codes with some constraints and LRCs, further, proposes an algorithm to determine locality of dual of a given linear code. Finally, based on near-MDS codes and the proposed algorithm, those obtained optimal LRCs are shown.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Codes</subject><subject>Computer centers</subject><subject>Data centers</subject><subject>Data integrity</subject><subject>Data storage</subject><subject>extension field</subject><subject>Failure</subject><subject>Fields (mathematics)</subject><subject>Linear algebra</subject><subject>near-MDS code</subject><subject>Nodes</subject><subject>optimal locally repairable codes</subject><subject>Singleton-type bound</subject><subject>Storage systems</subject><subject>Upper bounds</subject><issn>0916-8508</issn><issn>1745-1337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EEqXwBywisU6xEye2l1UID6lQaMvach27pErtYDsS_XuCQgurGY3OmdFcAK4RnKCMktvghPG6M5MEJkk5fUUIkhMwQgRnMUpTcgpGkKE8phmk5-DC-y2EiCYIj8BbYY0PrpOhtiayOlrWZtOoYE282rcqmreh3okmmi0KH2lnd1H5VfvQQ8NImCp6UcLFz3fLqLCV8pfgTIvGq6vfOgbv9-WqeIxn84enYjqLJSZJiEWmodZCiYrhHIo1rSQlGldIE8W0TASGIs-IhIglbA0Vk0r1AMuznElNSDoGN8Pe1tnPTvnAt7Zzpj_JE5pjyiDCWU_hgZLOeu-U5q3rH3J7jiD_CY8fwuP_wuu1xaBtfRAbdZSEC7Vs1J9UIpjzKaeH5t-SIyw_hOPKpN_0u4HQ</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>FU, Qiang</creator><creator>WANG, Buhong</creator><creator>LI, Ruihu</creator><creator>YANG, Ruipan</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230801</creationdate><title>Construction of Singleton-Type Optimal LRCs from Existing LRCs and Near-MDS Codes</title><author>FU, Qiang ; WANG, Buhong ; LI, Ruihu ; YANG, Ruipan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-a5f0ffaead9460ab8dc87f4d1f7e9fc2a40a657c01929b0e9cee87f96569cf773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Codes</topic><topic>Computer centers</topic><topic>Data centers</topic><topic>Data integrity</topic><topic>Data storage</topic><topic>extension field</topic><topic>Failure</topic><topic>Fields (mathematics)</topic><topic>Linear algebra</topic><topic>near-MDS code</topic><topic>Nodes</topic><topic>optimal locally repairable codes</topic><topic>Singleton-type bound</topic><topic>Storage systems</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FU, Qiang</creatorcontrib><creatorcontrib>WANG, Buhong</creatorcontrib><creatorcontrib>LI, Ruihu</creatorcontrib><creatorcontrib>YANG, Ruipan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FU, Qiang</au><au>WANG, Buhong</au><au>LI, Ruihu</au><au>YANG, Ruipan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of Singleton-Type Optimal LRCs from Existing LRCs and Near-MDS Codes</atitle><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle><addtitle>IEICE Trans. Fundamentals</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>E106.A</volume><issue>8</issue><spage>1051</spage><epage>1056</epage><pages>1051-1056</pages><artnum>2022EAP1107</artnum><issn>0916-8508</issn><eissn>1745-1337</eissn><abstract>Modern large scale distributed storage systems play a central role in data center and cloud storage, while node failure in data center is common. The lost data in failure node must be recovered efficiently. Locally repairable codes (LRCs) are designed to solve this problem. The locality of an LRC is the number of nodes that participate in recovering the lost data from node failure, which characterizes the repair efficiency. An LRC is called optimal if its minimum distance attains Singleton-type upper bound [1]. In this paper, using basic techniques of linear algebra over finite field, infinite optimal LRCs over extension fields are derived from a given optimal LRC over base field(or small field). Next, this paper investigates the relation between near-MDS codes with some constraints and LRCs, further, proposes an algorithm to determine locality of dual of a given linear code. Finally, based on near-MDS codes and the proposed algorithm, those obtained optimal LRCs are shown.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transfun.2022EAP1107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0916-8508
ispartof IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2023/08/01, Vol.E106.A(8), pp.1051-1056
issn 0916-8508
1745-1337
language eng
recordid cdi_proquest_journals_2864890145
source J-STAGE Free
subjects Algorithms
Cloud computing
Codes
Computer centers
Data centers
Data integrity
Data storage
extension field
Failure
Fields (mathematics)
Linear algebra
near-MDS code
Nodes
optimal locally repairable codes
Singleton-type bound
Storage systems
Upper bounds
title Construction of Singleton-Type Optimal LRCs from Existing LRCs and Near-MDS Codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20Singleton-Type%20Optimal%20LRCs%20from%20Existing%20LRCs%20and%20Near-MDS%20Codes&rft.jtitle=IEICE%20Transactions%20on%20Fundamentals%20of%20Electronics,%20Communications%20and%20Computer%20Sciences&rft.au=FU,%20Qiang&rft.date=2023-08-01&rft.volume=E106.A&rft.issue=8&rft.spage=1051&rft.epage=1056&rft.pages=1051-1056&rft.artnum=2022EAP1107&rft.issn=0916-8508&rft.eissn=1745-1337&rft_id=info:doi/10.1587/transfun.2022EAP1107&rft_dat=%3Cproquest_cross%3E2864890145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864890145&rft_id=info:pmid/&rfr_iscdi=true