Construction of Singleton-Type Optimal LRCs from Existing LRCs and Near-MDS Codes
Modern large scale distributed storage systems play a central role in data center and cloud storage, while node failure in data center is common. The lost data in failure node must be recovered efficiently. Locally repairable codes (LRCs) are designed to solve this problem. The locality of an LRC is...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2023/08/01, Vol.E106.A(8), pp.1051-1056 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1056 |
---|---|
container_issue | 8 |
container_start_page | 1051 |
container_title | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences |
container_volume | E106.A |
creator | FU, Qiang WANG, Buhong LI, Ruihu YANG, Ruipan |
description | Modern large scale distributed storage systems play a central role in data center and cloud storage, while node failure in data center is common. The lost data in failure node must be recovered efficiently. Locally repairable codes (LRCs) are designed to solve this problem. The locality of an LRC is the number of nodes that participate in recovering the lost data from node failure, which characterizes the repair efficiency. An LRC is called optimal if its minimum distance attains Singleton-type upper bound [1]. In this paper, using basic techniques of linear algebra over finite field, infinite optimal LRCs over extension fields are derived from a given optimal LRC over base field(or small field). Next, this paper investigates the relation between near-MDS codes with some constraints and LRCs, further, proposes an algorithm to determine locality of dual of a given linear code. Finally, based on near-MDS codes and the proposed algorithm, those obtained optimal LRCs are shown. |
doi_str_mv | 10.1587/transfun.2022EAP1107 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2864890145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864890145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-a5f0ffaead9460ab8dc87f4d1f7e9fc2a40a657c01929b0e9cee87f96569cf773</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwBywisU6xEye2l1UID6lQaMvach27pErtYDsS_XuCQgurGY3OmdFcAK4RnKCMktvghPG6M5MEJkk5fUUIkhMwQgRnMUpTcgpGkKE8phmk5-DC-y2EiCYIj8BbYY0PrpOhtiayOlrWZtOoYE282rcqmreh3okmmi0KH2lnd1H5VfvQQ8NImCp6UcLFz3fLqLCV8pfgTIvGq6vfOgbv9-WqeIxn84enYjqLJSZJiEWmodZCiYrhHIo1rSQlGldIE8W0TASGIs-IhIglbA0Vk0r1AMuznElNSDoGN8Pe1tnPTvnAt7Zzpj_JE5pjyiDCWU_hgZLOeu-U5q3rH3J7jiD_CY8fwuP_wuu1xaBtfRAbdZSEC7Vs1J9UIpjzKaeH5t-SIyw_hOPKpN_0u4HQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864890145</pqid></control><display><type>article</type><title>Construction of Singleton-Type Optimal LRCs from Existing LRCs and Near-MDS Codes</title><source>J-STAGE Free</source><creator>FU, Qiang ; WANG, Buhong ; LI, Ruihu ; YANG, Ruipan</creator><creatorcontrib>FU, Qiang ; WANG, Buhong ; LI, Ruihu ; YANG, Ruipan</creatorcontrib><description>Modern large scale distributed storage systems play a central role in data center and cloud storage, while node failure in data center is common. The lost data in failure node must be recovered efficiently. Locally repairable codes (LRCs) are designed to solve this problem. The locality of an LRC is the number of nodes that participate in recovering the lost data from node failure, which characterizes the repair efficiency. An LRC is called optimal if its minimum distance attains Singleton-type upper bound [1]. In this paper, using basic techniques of linear algebra over finite field, infinite optimal LRCs over extension fields are derived from a given optimal LRC over base field(or small field). Next, this paper investigates the relation between near-MDS codes with some constraints and LRCs, further, proposes an algorithm to determine locality of dual of a given linear code. Finally, based on near-MDS codes and the proposed algorithm, those obtained optimal LRCs are shown.</description><identifier>ISSN: 0916-8508</identifier><identifier>EISSN: 1745-1337</identifier><identifier>DOI: 10.1587/transfun.2022EAP1107</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Algorithms ; Cloud computing ; Codes ; Computer centers ; Data centers ; Data integrity ; Data storage ; extension field ; Failure ; Fields (mathematics) ; Linear algebra ; near-MDS code ; Nodes ; optimal locally repairable codes ; Singleton-type bound ; Storage systems ; Upper bounds</subject><ispartof>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2023/08/01, Vol.E106.A(8), pp.1051-1056</ispartof><rights>2023 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c472t-a5f0ffaead9460ab8dc87f4d1f7e9fc2a40a657c01929b0e9cee87f96569cf773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,1879,27907,27908</link.rule.ids></links><search><creatorcontrib>FU, Qiang</creatorcontrib><creatorcontrib>WANG, Buhong</creatorcontrib><creatorcontrib>LI, Ruihu</creatorcontrib><creatorcontrib>YANG, Ruipan</creatorcontrib><title>Construction of Singleton-Type Optimal LRCs from Existing LRCs and Near-MDS Codes</title><title>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</title><addtitle>IEICE Trans. Fundamentals</addtitle><description>Modern large scale distributed storage systems play a central role in data center and cloud storage, while node failure in data center is common. The lost data in failure node must be recovered efficiently. Locally repairable codes (LRCs) are designed to solve this problem. The locality of an LRC is the number of nodes that participate in recovering the lost data from node failure, which characterizes the repair efficiency. An LRC is called optimal if its minimum distance attains Singleton-type upper bound [1]. In this paper, using basic techniques of linear algebra over finite field, infinite optimal LRCs over extension fields are derived from a given optimal LRC over base field(or small field). Next, this paper investigates the relation between near-MDS codes with some constraints and LRCs, further, proposes an algorithm to determine locality of dual of a given linear code. Finally, based on near-MDS codes and the proposed algorithm, those obtained optimal LRCs are shown.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Codes</subject><subject>Computer centers</subject><subject>Data centers</subject><subject>Data integrity</subject><subject>Data storage</subject><subject>extension field</subject><subject>Failure</subject><subject>Fields (mathematics)</subject><subject>Linear algebra</subject><subject>near-MDS code</subject><subject>Nodes</subject><subject>optimal locally repairable codes</subject><subject>Singleton-type bound</subject><subject>Storage systems</subject><subject>Upper bounds</subject><issn>0916-8508</issn><issn>1745-1337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EEqXwBywisU6xEye2l1UID6lQaMvach27pErtYDsS_XuCQgurGY3OmdFcAK4RnKCMktvghPG6M5MEJkk5fUUIkhMwQgRnMUpTcgpGkKE8phmk5-DC-y2EiCYIj8BbYY0PrpOhtiayOlrWZtOoYE282rcqmreh3okmmi0KH2lnd1H5VfvQQ8NImCp6UcLFz3fLqLCV8pfgTIvGq6vfOgbv9-WqeIxn84enYjqLJSZJiEWmodZCiYrhHIo1rSQlGldIE8W0TASGIs-IhIglbA0Vk0r1AMuznElNSDoGN8Pe1tnPTvnAt7Zzpj_JE5pjyiDCWU_hgZLOeu-U5q3rH3J7jiD_CY8fwuP_wuu1xaBtfRAbdZSEC7Vs1J9UIpjzKaeH5t-SIyw_hOPKpN_0u4HQ</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>FU, Qiang</creator><creator>WANG, Buhong</creator><creator>LI, Ruihu</creator><creator>YANG, Ruipan</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230801</creationdate><title>Construction of Singleton-Type Optimal LRCs from Existing LRCs and Near-MDS Codes</title><author>FU, Qiang ; WANG, Buhong ; LI, Ruihu ; YANG, Ruipan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-a5f0ffaead9460ab8dc87f4d1f7e9fc2a40a657c01929b0e9cee87f96569cf773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Codes</topic><topic>Computer centers</topic><topic>Data centers</topic><topic>Data integrity</topic><topic>Data storage</topic><topic>extension field</topic><topic>Failure</topic><topic>Fields (mathematics)</topic><topic>Linear algebra</topic><topic>near-MDS code</topic><topic>Nodes</topic><topic>optimal locally repairable codes</topic><topic>Singleton-type bound</topic><topic>Storage systems</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FU, Qiang</creatorcontrib><creatorcontrib>WANG, Buhong</creatorcontrib><creatorcontrib>LI, Ruihu</creatorcontrib><creatorcontrib>YANG, Ruipan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FU, Qiang</au><au>WANG, Buhong</au><au>LI, Ruihu</au><au>YANG, Ruipan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of Singleton-Type Optimal LRCs from Existing LRCs and Near-MDS Codes</atitle><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle><addtitle>IEICE Trans. Fundamentals</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>E106.A</volume><issue>8</issue><spage>1051</spage><epage>1056</epage><pages>1051-1056</pages><artnum>2022EAP1107</artnum><issn>0916-8508</issn><eissn>1745-1337</eissn><abstract>Modern large scale distributed storage systems play a central role in data center and cloud storage, while node failure in data center is common. The lost data in failure node must be recovered efficiently. Locally repairable codes (LRCs) are designed to solve this problem. The locality of an LRC is the number of nodes that participate in recovering the lost data from node failure, which characterizes the repair efficiency. An LRC is called optimal if its minimum distance attains Singleton-type upper bound [1]. In this paper, using basic techniques of linear algebra over finite field, infinite optimal LRCs over extension fields are derived from a given optimal LRC over base field(or small field). Next, this paper investigates the relation between near-MDS codes with some constraints and LRCs, further, proposes an algorithm to determine locality of dual of a given linear code. Finally, based on near-MDS codes and the proposed algorithm, those obtained optimal LRCs are shown.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transfun.2022EAP1107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8508 |
ispartof | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2023/08/01, Vol.E106.A(8), pp.1051-1056 |
issn | 0916-8508 1745-1337 |
language | eng |
recordid | cdi_proquest_journals_2864890145 |
source | J-STAGE Free |
subjects | Algorithms Cloud computing Codes Computer centers Data centers Data integrity Data storage extension field Failure Fields (mathematics) Linear algebra near-MDS code Nodes optimal locally repairable codes Singleton-type bound Storage systems Upper bounds |
title | Construction of Singleton-Type Optimal LRCs from Existing LRCs and Near-MDS Codes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20Singleton-Type%20Optimal%20LRCs%20from%20Existing%20LRCs%20and%20Near-MDS%20Codes&rft.jtitle=IEICE%20Transactions%20on%20Fundamentals%20of%20Electronics,%20Communications%20and%20Computer%20Sciences&rft.au=FU,%20Qiang&rft.date=2023-08-01&rft.volume=E106.A&rft.issue=8&rft.spage=1051&rft.epage=1056&rft.pages=1051-1056&rft.artnum=2022EAP1107&rft.issn=0916-8508&rft.eissn=1745-1337&rft_id=info:doi/10.1587/transfun.2022EAP1107&rft_dat=%3Cproquest_cross%3E2864890145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864890145&rft_id=info:pmid/&rfr_iscdi=true |