Deep Complex-Valued Neural Network-Based Triple-Path Mask and Steering Vector Estimation for Multichannel Target Speech Separation

We propose a deep complex-valued neural network-based beamforming framework for multichannel target speech separation. The deep complex-valued neural network predicts steering vectors and complex ratio masks for speaker signals. The masked signals are then used to calculate the spatial covariance ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Signal Processing 2023/07/01, Vol.27(4), pp.87-91
Hauptverfasser: Qin, Mohan, Li, Li, Makino, Shoji
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 91
container_issue 4
container_start_page 87
container_title Journal of Signal Processing
container_volume 27
creator Qin, Mohan
Li, Li
Makino, Shoji
description We propose a deep complex-valued neural network-based beamforming framework for multichannel target speech separation. The deep complex-valued neural network predicts steering vectors and complex ratio masks for speaker signals. The masked signals are then used to calculate the spatial covariance matrices needed for minimum variance distortionless response (MVDR) beamforming. We propose triple-path modeling for mask estimation, which takes both intrachannel and interchannel features into consideration. Our experimental results revealed that the proposed framework achieves better target speech separation performance than do the baseline methods.
doi_str_mv 10.2299/jsp.27.87
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2864832726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864832726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2737-e97d89af408328c91698ea9d31bbafb14494ffabcd6082e4aaae0ea266f971643</originalsourceid><addsrcrecordid>eNo90E1P20AQBmALFYk09MA_WIlTD073i_2QuNAApVJoKyXkuprY48SJsc3uWsC1v7xLAznN7OjRrObNsjNGJ5xb-20b-gnXE6OPshEzhuaMMvEp9ULyXHFBT7LPIWwpVUpfiFH29xqxJ9PusW_wJV9CM2BJfuHgoUklPnd-l3-HkIYLXyeT_4G4IfcQdgTakswjoq_bNVliETtPbkKsHyHWXUuq9LwfmlgXG2hbbMgC_BojmfeIxYbMsQf_X55mxxU0Ab-813H2cHuzmN7ls98_fk6vZnnBtdA5Wl0aC5WkRnBTWKasQbClYKsVVCsmpZVVBauiVNRwlACAFIErVVnNlBTj7Hy_t_fd04Ahum03-DZ96bhRMm3VXCX1da8K34XgsXK9Tyf5V8eoe4vYpYgd187oZC_3dhsirPEgwaerG_yQcs8P4xSId9iKf97GhuM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864832726</pqid></control><display><type>article</type><title>Deep Complex-Valued Neural Network-Based Triple-Path Mask and Steering Vector Estimation for Multichannel Target Speech Separation</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Qin, Mohan ; Li, Li ; Makino, Shoji</creator><creatorcontrib>Qin, Mohan ; Li, Li ; Makino, Shoji</creatorcontrib><description>We propose a deep complex-valued neural network-based beamforming framework for multichannel target speech separation. The deep complex-valued neural network predicts steering vectors and complex ratio masks for speaker signals. The masked signals are then used to calculate the spatial covariance matrices needed for minimum variance distortionless response (MVDR) beamforming. We propose triple-path modeling for mask estimation, which takes both intrachannel and interchannel features into consideration. Our experimental results revealed that the proposed framework achieves better target speech separation performance than do the baseline methods.</description><identifier>ISSN: 1342-6230</identifier><identifier>EISSN: 1880-1013</identifier><identifier>DOI: 10.2299/jsp.27.87</identifier><language>eng ; jpn</language><publisher>Tokyo: Research Institute of Signal Processing, Japan</publisher><subject>Beamforming ; Covariance matrix ; Neural networks ; Separation ; Speech ; Steering</subject><ispartof>Journal of Signal Processing, 2023/07/01, Vol.27(4), pp.87-91</ispartof><rights>2023 Research Institute of Signal Processing, Japan</rights><rights>Copyright Japan Science and Technology Agency 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2737-e97d89af408328c91698ea9d31bbafb14494ffabcd6082e4aaae0ea266f971643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1881,27923,27924</link.rule.ids></links><search><creatorcontrib>Qin, Mohan</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Makino, Shoji</creatorcontrib><title>Deep Complex-Valued Neural Network-Based Triple-Path Mask and Steering Vector Estimation for Multichannel Target Speech Separation</title><title>Journal of Signal Processing</title><addtitle>Journal of Signal Processing</addtitle><description>We propose a deep complex-valued neural network-based beamforming framework for multichannel target speech separation. The deep complex-valued neural network predicts steering vectors and complex ratio masks for speaker signals. The masked signals are then used to calculate the spatial covariance matrices needed for minimum variance distortionless response (MVDR) beamforming. We propose triple-path modeling for mask estimation, which takes both intrachannel and interchannel features into consideration. Our experimental results revealed that the proposed framework achieves better target speech separation performance than do the baseline methods.</description><subject>Beamforming</subject><subject>Covariance matrix</subject><subject>Neural networks</subject><subject>Separation</subject><subject>Speech</subject><subject>Steering</subject><issn>1342-6230</issn><issn>1880-1013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo90E1P20AQBmALFYk09MA_WIlTD073i_2QuNAApVJoKyXkuprY48SJsc3uWsC1v7xLAznN7OjRrObNsjNGJ5xb-20b-gnXE6OPshEzhuaMMvEp9ULyXHFBT7LPIWwpVUpfiFH29xqxJ9PusW_wJV9CM2BJfuHgoUklPnd-l3-HkIYLXyeT_4G4IfcQdgTakswjoq_bNVliETtPbkKsHyHWXUuq9LwfmlgXG2hbbMgC_BojmfeIxYbMsQf_X55mxxU0Ab-813H2cHuzmN7ls98_fk6vZnnBtdA5Wl0aC5WkRnBTWKasQbClYKsVVCsmpZVVBauiVNRwlACAFIErVVnNlBTj7Hy_t_fd04Ahum03-DZ96bhRMm3VXCX1da8K34XgsXK9Tyf5V8eoe4vYpYgd187oZC_3dhsirPEgwaerG_yQcs8P4xSId9iKf97GhuM</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Qin, Mohan</creator><creator>Li, Li</creator><creator>Makino, Shoji</creator><general>Research Institute of Signal Processing, Japan</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230701</creationdate><title>Deep Complex-Valued Neural Network-Based Triple-Path Mask and Steering Vector Estimation for Multichannel Target Speech Separation</title><author>Qin, Mohan ; Li, Li ; Makino, Shoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2737-e97d89af408328c91698ea9d31bbafb14494ffabcd6082e4aaae0ea266f971643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2023</creationdate><topic>Beamforming</topic><topic>Covariance matrix</topic><topic>Neural networks</topic><topic>Separation</topic><topic>Speech</topic><topic>Steering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Mohan</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Makino, Shoji</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Signal Processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Mohan</au><au>Li, Li</au><au>Makino, Shoji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Complex-Valued Neural Network-Based Triple-Path Mask and Steering Vector Estimation for Multichannel Target Speech Separation</atitle><jtitle>Journal of Signal Processing</jtitle><addtitle>Journal of Signal Processing</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>27</volume><issue>4</issue><spage>87</spage><epage>91</epage><pages>87-91</pages><issn>1342-6230</issn><eissn>1880-1013</eissn><abstract>We propose a deep complex-valued neural network-based beamforming framework for multichannel target speech separation. The deep complex-valued neural network predicts steering vectors and complex ratio masks for speaker signals. The masked signals are then used to calculate the spatial covariance matrices needed for minimum variance distortionless response (MVDR) beamforming. We propose triple-path modeling for mask estimation, which takes both intrachannel and interchannel features into consideration. Our experimental results revealed that the proposed framework achieves better target speech separation performance than do the baseline methods.</abstract><cop>Tokyo</cop><pub>Research Institute of Signal Processing, Japan</pub><doi>10.2299/jsp.27.87</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1342-6230
ispartof Journal of Signal Processing, 2023/07/01, Vol.27(4), pp.87-91
issn 1342-6230
1880-1013
language eng ; jpn
recordid cdi_proquest_journals_2864832726
source J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Beamforming
Covariance matrix
Neural networks
Separation
Speech
Steering
title Deep Complex-Valued Neural Network-Based Triple-Path Mask and Steering Vector Estimation for Multichannel Target Speech Separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A23%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Complex-Valued%20Neural%20Network-Based%20Triple-Path%20Mask%20and%20Steering%20Vector%20Estimation%20for%20Multichannel%20Target%20Speech%20Separation&rft.jtitle=Journal%20of%20Signal%20Processing&rft.au=Qin,%20Mohan&rft.date=2023-07-01&rft.volume=27&rft.issue=4&rft.spage=87&rft.epage=91&rft.pages=87-91&rft.issn=1342-6230&rft.eissn=1880-1013&rft_id=info:doi/10.2299/jsp.27.87&rft_dat=%3Cproquest_cross%3E2864832726%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864832726&rft_id=info:pmid/&rfr_iscdi=true