Detecting extreme-mass-ratio inspirals for space-borne detectors with deep learning

One of the primary objectives for space-borne gravitational wave detectors is the detection of extreme-mass-ratio inspirals (EMRIs). This undertaking poses a substantial challenge because of the complex and long EMRI signals, further complicated by their inherently faint signal. In this research, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-09
Hauptverfasser: Qianyun Yun, Wen-Biao Han, Yi-Yang, Guo, Wang, He, Du, Minghui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Qianyun Yun
Wen-Biao Han
Yi-Yang, Guo
Wang, He
Du, Minghui
description One of the primary objectives for space-borne gravitational wave detectors is the detection of extreme-mass-ratio inspirals (EMRIs). This undertaking poses a substantial challenge because of the complex and long EMRI signals, further complicated by their inherently faint signal. In this research, we introduce a 2-layer Convolutional Neural Network (CNN) approach to detect EMRI signals for space-borne detectors. Our method employs the Q-transform for data preprocessing, effectively preserving EMRI signal characteristics while minimizing data size. By harnessing the robust capabilities of CNNs, we can reliably distinguish EMRI signals from noise, particularly when the signal-to-noise~(SNR) ratio reaches 50, a benchmark considered a ``golden'' EMRI. At the meantime, we incorporate time-delay interferometry (TDI) to ensure practical utility. We assess our model's performance using a 0.5-year dataset, achieving a true positive rate~(TPR) of 94.2\% at a 1\% false positive rate~(FPR) across various signal-to-noise ratio form 50-100, with 91\% TPR and 1\% FPR at an SNR of 50. This study underscores the promise of incorporating deep learning methods to advance EMRI data analysis, potentially leading to rapid EMRI signal detection.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2864708761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864708761</sourcerecordid><originalsourceid>FETCH-proquest_journals_28647087613</originalsourceid><addsrcrecordid>eNqNjMsKwjAURIMgWLT_EHAdaJO-9j5wr_sS662mtEm8N0U_3yB-gKthmHNmwRKpVC6aQsoVS4mGLMtkVcuyVAk77yFAF4y9c3gHhAnEpIkE6mAcN5a8QT0S7x1y8roDcXVogd--mkPiLxMesYLnI2i08WnDln10IP3lmm2Ph8vuJDy65wwU2sHNaOPUyqYq6qypq1z9R30Am4tA2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864708761</pqid></control><display><type>article</type><title>Detecting extreme-mass-ratio inspirals for space-borne detectors with deep learning</title><source>Free E- Journals</source><creator>Qianyun Yun ; Wen-Biao Han ; Yi-Yang, Guo ; Wang, He ; Du, Minghui</creator><creatorcontrib>Qianyun Yun ; Wen-Biao Han ; Yi-Yang, Guo ; Wang, He ; Du, Minghui</creatorcontrib><description>One of the primary objectives for space-borne gravitational wave detectors is the detection of extreme-mass-ratio inspirals (EMRIs). This undertaking poses a substantial challenge because of the complex and long EMRI signals, further complicated by their inherently faint signal. In this research, we introduce a 2-layer Convolutional Neural Network (CNN) approach to detect EMRI signals for space-borne detectors. Our method employs the Q-transform for data preprocessing, effectively preserving EMRI signal characteristics while minimizing data size. By harnessing the robust capabilities of CNNs, we can reliably distinguish EMRI signals from noise, particularly when the signal-to-noise~(SNR) ratio reaches 50, a benchmark considered a ``golden'' EMRI. At the meantime, we incorporate time-delay interferometry (TDI) to ensure practical utility. We assess our model's performance using a 0.5-year dataset, achieving a true positive rate~(TPR) of 94.2\% at a 1\% false positive rate~(FPR) across various signal-to-noise ratio form 50-100, with 91\% TPR and 1\% FPR at an SNR of 50. This study underscores the promise of incorporating deep learning methods to advance EMRI data analysis, potentially leading to rapid EMRI signal detection.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Data analysis ; Deep learning ; Detectors ; Gravitational waves ; Machine learning ; Sensors ; Signal detection ; Signal to noise ratio</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Qianyun Yun</creatorcontrib><creatorcontrib>Wen-Biao Han</creatorcontrib><creatorcontrib>Yi-Yang, Guo</creatorcontrib><creatorcontrib>Wang, He</creatorcontrib><creatorcontrib>Du, Minghui</creatorcontrib><title>Detecting extreme-mass-ratio inspirals for space-borne detectors with deep learning</title><title>arXiv.org</title><description>One of the primary objectives for space-borne gravitational wave detectors is the detection of extreme-mass-ratio inspirals (EMRIs). This undertaking poses a substantial challenge because of the complex and long EMRI signals, further complicated by their inherently faint signal. In this research, we introduce a 2-layer Convolutional Neural Network (CNN) approach to detect EMRI signals for space-borne detectors. Our method employs the Q-transform for data preprocessing, effectively preserving EMRI signal characteristics while minimizing data size. By harnessing the robust capabilities of CNNs, we can reliably distinguish EMRI signals from noise, particularly when the signal-to-noise~(SNR) ratio reaches 50, a benchmark considered a ``golden'' EMRI. At the meantime, we incorporate time-delay interferometry (TDI) to ensure practical utility. We assess our model's performance using a 0.5-year dataset, achieving a true positive rate~(TPR) of 94.2\% at a 1\% false positive rate~(FPR) across various signal-to-noise ratio form 50-100, with 91\% TPR and 1\% FPR at an SNR of 50. This study underscores the promise of incorporating deep learning methods to advance EMRI data analysis, potentially leading to rapid EMRI signal detection.</description><subject>Artificial neural networks</subject><subject>Data analysis</subject><subject>Deep learning</subject><subject>Detectors</subject><subject>Gravitational waves</subject><subject>Machine learning</subject><subject>Sensors</subject><subject>Signal detection</subject><subject>Signal to noise ratio</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKwjAURIMgWLT_EHAdaJO-9j5wr_sS662mtEm8N0U_3yB-gKthmHNmwRKpVC6aQsoVS4mGLMtkVcuyVAk77yFAF4y9c3gHhAnEpIkE6mAcN5a8QT0S7x1y8roDcXVogd--mkPiLxMesYLnI2i08WnDln10IP3lmm2Ph8vuJDy65wwU2sHNaOPUyqYq6qypq1z9R30Am4tA2g</recordid><startdate>20230913</startdate><enddate>20230913</enddate><creator>Qianyun Yun</creator><creator>Wen-Biao Han</creator><creator>Yi-Yang, Guo</creator><creator>Wang, He</creator><creator>Du, Minghui</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230913</creationdate><title>Detecting extreme-mass-ratio inspirals for space-borne detectors with deep learning</title><author>Qianyun Yun ; Wen-Biao Han ; Yi-Yang, Guo ; Wang, He ; Du, Minghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28647087613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Data analysis</topic><topic>Deep learning</topic><topic>Detectors</topic><topic>Gravitational waves</topic><topic>Machine learning</topic><topic>Sensors</topic><topic>Signal detection</topic><topic>Signal to noise ratio</topic><toplevel>online_resources</toplevel><creatorcontrib>Qianyun Yun</creatorcontrib><creatorcontrib>Wen-Biao Han</creatorcontrib><creatorcontrib>Yi-Yang, Guo</creatorcontrib><creatorcontrib>Wang, He</creatorcontrib><creatorcontrib>Du, Minghui</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qianyun Yun</au><au>Wen-Biao Han</au><au>Yi-Yang, Guo</au><au>Wang, He</au><au>Du, Minghui</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Detecting extreme-mass-ratio inspirals for space-borne detectors with deep learning</atitle><jtitle>arXiv.org</jtitle><date>2023-09-13</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>One of the primary objectives for space-borne gravitational wave detectors is the detection of extreme-mass-ratio inspirals (EMRIs). This undertaking poses a substantial challenge because of the complex and long EMRI signals, further complicated by their inherently faint signal. In this research, we introduce a 2-layer Convolutional Neural Network (CNN) approach to detect EMRI signals for space-borne detectors. Our method employs the Q-transform for data preprocessing, effectively preserving EMRI signal characteristics while minimizing data size. By harnessing the robust capabilities of CNNs, we can reliably distinguish EMRI signals from noise, particularly when the signal-to-noise~(SNR) ratio reaches 50, a benchmark considered a ``golden'' EMRI. At the meantime, we incorporate time-delay interferometry (TDI) to ensure practical utility. We assess our model's performance using a 0.5-year dataset, achieving a true positive rate~(TPR) of 94.2\% at a 1\% false positive rate~(FPR) across various signal-to-noise ratio form 50-100, with 91\% TPR and 1\% FPR at an SNR of 50. This study underscores the promise of incorporating deep learning methods to advance EMRI data analysis, potentially leading to rapid EMRI signal detection.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2864708761
source Free E- Journals
subjects Artificial neural networks
Data analysis
Deep learning
Detectors
Gravitational waves
Machine learning
Sensors
Signal detection
Signal to noise ratio
title Detecting extreme-mass-ratio inspirals for space-borne detectors with deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A36%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Detecting%20extreme-mass-ratio%20inspirals%20for%20space-borne%20detectors%20with%20deep%20learning&rft.jtitle=arXiv.org&rft.au=Qianyun%20Yun&rft.date=2023-09-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2864708761%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864708761&rft_id=info:pmid/&rfr_iscdi=true