Detecting extreme-mass-ratio inspirals for space-borne detectors with deep learning
One of the primary objectives for space-borne gravitational wave detectors is the detection of extreme-mass-ratio inspirals (EMRIs). This undertaking poses a substantial challenge because of the complex and long EMRI signals, further complicated by their inherently faint signal. In this research, we...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-09 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Qianyun Yun Wen-Biao Han Yi-Yang, Guo Wang, He Du, Minghui |
description | One of the primary objectives for space-borne gravitational wave detectors is the detection of extreme-mass-ratio inspirals (EMRIs). This undertaking poses a substantial challenge because of the complex and long EMRI signals, further complicated by their inherently faint signal. In this research, we introduce a 2-layer Convolutional Neural Network (CNN) approach to detect EMRI signals for space-borne detectors. Our method employs the Q-transform for data preprocessing, effectively preserving EMRI signal characteristics while minimizing data size. By harnessing the robust capabilities of CNNs, we can reliably distinguish EMRI signals from noise, particularly when the signal-to-noise~(SNR) ratio reaches 50, a benchmark considered a ``golden'' EMRI. At the meantime, we incorporate time-delay interferometry (TDI) to ensure practical utility. We assess our model's performance using a 0.5-year dataset, achieving a true positive rate~(TPR) of 94.2\% at a 1\% false positive rate~(FPR) across various signal-to-noise ratio form 50-100, with 91\% TPR and 1\% FPR at an SNR of 50. This study underscores the promise of incorporating deep learning methods to advance EMRI data analysis, potentially leading to rapid EMRI signal detection. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2864708761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864708761</sourcerecordid><originalsourceid>FETCH-proquest_journals_28647087613</originalsourceid><addsrcrecordid>eNqNjMsKwjAURIMgWLT_EHAdaJO-9j5wr_sS662mtEm8N0U_3yB-gKthmHNmwRKpVC6aQsoVS4mGLMtkVcuyVAk77yFAF4y9c3gHhAnEpIkE6mAcN5a8QT0S7x1y8roDcXVogd--mkPiLxMesYLnI2i08WnDln10IP3lmm2Ph8vuJDy65wwU2sHNaOPUyqYq6qypq1z9R30Am4tA2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864708761</pqid></control><display><type>article</type><title>Detecting extreme-mass-ratio inspirals for space-borne detectors with deep learning</title><source>Free E- Journals</source><creator>Qianyun Yun ; Wen-Biao Han ; Yi-Yang, Guo ; Wang, He ; Du, Minghui</creator><creatorcontrib>Qianyun Yun ; Wen-Biao Han ; Yi-Yang, Guo ; Wang, He ; Du, Minghui</creatorcontrib><description>One of the primary objectives for space-borne gravitational wave detectors is the detection of extreme-mass-ratio inspirals (EMRIs). This undertaking poses a substantial challenge because of the complex and long EMRI signals, further complicated by their inherently faint signal. In this research, we introduce a 2-layer Convolutional Neural Network (CNN) approach to detect EMRI signals for space-borne detectors. Our method employs the Q-transform for data preprocessing, effectively preserving EMRI signal characteristics while minimizing data size. By harnessing the robust capabilities of CNNs, we can reliably distinguish EMRI signals from noise, particularly when the signal-to-noise~(SNR) ratio reaches 50, a benchmark considered a ``golden'' EMRI. At the meantime, we incorporate time-delay interferometry (TDI) to ensure practical utility. We assess our model's performance using a 0.5-year dataset, achieving a true positive rate~(TPR) of 94.2\% at a 1\% false positive rate~(FPR) across various signal-to-noise ratio form 50-100, with 91\% TPR and 1\% FPR at an SNR of 50. This study underscores the promise of incorporating deep learning methods to advance EMRI data analysis, potentially leading to rapid EMRI signal detection.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Data analysis ; Deep learning ; Detectors ; Gravitational waves ; Machine learning ; Sensors ; Signal detection ; Signal to noise ratio</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Qianyun Yun</creatorcontrib><creatorcontrib>Wen-Biao Han</creatorcontrib><creatorcontrib>Yi-Yang, Guo</creatorcontrib><creatorcontrib>Wang, He</creatorcontrib><creatorcontrib>Du, Minghui</creatorcontrib><title>Detecting extreme-mass-ratio inspirals for space-borne detectors with deep learning</title><title>arXiv.org</title><description>One of the primary objectives for space-borne gravitational wave detectors is the detection of extreme-mass-ratio inspirals (EMRIs). This undertaking poses a substantial challenge because of the complex and long EMRI signals, further complicated by their inherently faint signal. In this research, we introduce a 2-layer Convolutional Neural Network (CNN) approach to detect EMRI signals for space-borne detectors. Our method employs the Q-transform for data preprocessing, effectively preserving EMRI signal characteristics while minimizing data size. By harnessing the robust capabilities of CNNs, we can reliably distinguish EMRI signals from noise, particularly when the signal-to-noise~(SNR) ratio reaches 50, a benchmark considered a ``golden'' EMRI. At the meantime, we incorporate time-delay interferometry (TDI) to ensure practical utility. We assess our model's performance using a 0.5-year dataset, achieving a true positive rate~(TPR) of 94.2\% at a 1\% false positive rate~(FPR) across various signal-to-noise ratio form 50-100, with 91\% TPR and 1\% FPR at an SNR of 50. This study underscores the promise of incorporating deep learning methods to advance EMRI data analysis, potentially leading to rapid EMRI signal detection.</description><subject>Artificial neural networks</subject><subject>Data analysis</subject><subject>Deep learning</subject><subject>Detectors</subject><subject>Gravitational waves</subject><subject>Machine learning</subject><subject>Sensors</subject><subject>Signal detection</subject><subject>Signal to noise ratio</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKwjAURIMgWLT_EHAdaJO-9j5wr_sS662mtEm8N0U_3yB-gKthmHNmwRKpVC6aQsoVS4mGLMtkVcuyVAk77yFAF4y9c3gHhAnEpIkE6mAcN5a8QT0S7x1y8roDcXVogd--mkPiLxMesYLnI2i08WnDln10IP3lmm2Ph8vuJDy65wwU2sHNaOPUyqYq6qypq1z9R30Am4tA2g</recordid><startdate>20230913</startdate><enddate>20230913</enddate><creator>Qianyun Yun</creator><creator>Wen-Biao Han</creator><creator>Yi-Yang, Guo</creator><creator>Wang, He</creator><creator>Du, Minghui</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230913</creationdate><title>Detecting extreme-mass-ratio inspirals for space-borne detectors with deep learning</title><author>Qianyun Yun ; Wen-Biao Han ; Yi-Yang, Guo ; Wang, He ; Du, Minghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28647087613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Data analysis</topic><topic>Deep learning</topic><topic>Detectors</topic><topic>Gravitational waves</topic><topic>Machine learning</topic><topic>Sensors</topic><topic>Signal detection</topic><topic>Signal to noise ratio</topic><toplevel>online_resources</toplevel><creatorcontrib>Qianyun Yun</creatorcontrib><creatorcontrib>Wen-Biao Han</creatorcontrib><creatorcontrib>Yi-Yang, Guo</creatorcontrib><creatorcontrib>Wang, He</creatorcontrib><creatorcontrib>Du, Minghui</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qianyun Yun</au><au>Wen-Biao Han</au><au>Yi-Yang, Guo</au><au>Wang, He</au><au>Du, Minghui</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Detecting extreme-mass-ratio inspirals for space-borne detectors with deep learning</atitle><jtitle>arXiv.org</jtitle><date>2023-09-13</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>One of the primary objectives for space-borne gravitational wave detectors is the detection of extreme-mass-ratio inspirals (EMRIs). This undertaking poses a substantial challenge because of the complex and long EMRI signals, further complicated by their inherently faint signal. In this research, we introduce a 2-layer Convolutional Neural Network (CNN) approach to detect EMRI signals for space-borne detectors. Our method employs the Q-transform for data preprocessing, effectively preserving EMRI signal characteristics while minimizing data size. By harnessing the robust capabilities of CNNs, we can reliably distinguish EMRI signals from noise, particularly when the signal-to-noise~(SNR) ratio reaches 50, a benchmark considered a ``golden'' EMRI. At the meantime, we incorporate time-delay interferometry (TDI) to ensure practical utility. We assess our model's performance using a 0.5-year dataset, achieving a true positive rate~(TPR) of 94.2\% at a 1\% false positive rate~(FPR) across various signal-to-noise ratio form 50-100, with 91\% TPR and 1\% FPR at an SNR of 50. This study underscores the promise of incorporating deep learning methods to advance EMRI data analysis, potentially leading to rapid EMRI signal detection.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2864708761 |
source | Free E- Journals |
subjects | Artificial neural networks Data analysis Deep learning Detectors Gravitational waves Machine learning Sensors Signal detection Signal to noise ratio |
title | Detecting extreme-mass-ratio inspirals for space-borne detectors with deep learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A36%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Detecting%20extreme-mass-ratio%20inspirals%20for%20space-borne%20detectors%20with%20deep%20learning&rft.jtitle=arXiv.org&rft.au=Qianyun%20Yun&rft.date=2023-09-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2864708761%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864708761&rft_id=info:pmid/&rfr_iscdi=true |