Self-assembly of cellulose nanocrystals confined to square capillaries
Biological systems exploit restricted degrees of freedom to drive self-assembly of nano- and microarchitectures. Simplified systems, such as colloidal nanoparticles that behave as lyotropic liquid crystalline mesophases in confined geometric spaces, may be used to mimic biological structures. Cellul...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2023-09, Vol.15 (35), p.14388-14398 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14398 |
---|---|
container_issue | 35 |
container_start_page | 14388 |
container_title | Nanoscale |
container_volume | 15 |
creator | Ackroyd, Amanda J De Paolis, Adam Xu, Yi-Tao Momeni, Arash Hamad, Wadood Y MacLachlan, Mark J |
description | Biological systems exploit restricted degrees of freedom to drive self-assembly of nano- and microarchitectures. Simplified systems, such as colloidal nanoparticles that behave as lyotropic liquid crystalline mesophases in confined geometric spaces, may be used to mimic biological structures. Cellulose nanocrystals (CNCs) are colloidally stable nanoparticles that self-assemble into chiral nematic (
ChN
) liquid crystalline mesophases. To date, the self-assembly of
ChN
mesophases of CNCs has been studied under confinement conditions within curved surfaces or under drying conditions that impose curvatures that can be exploited to control
ChN
ordering; however, their self-assembly has not been investigated in geometries with square cross-sections under static conditions. Here, we show that because of surface anchoring on perpendicular surfaces, the
ChN
CNC phase is unable to bend with the 90° angle of the square capillary under increasing confinement. Instead, the
ChN
phase forms radial layers in the shape of concentric squircle shells. With increasing layer distance from the capillary wall, the squircles transition into concentric cylinder shells. In larger capillaries, the radial shell layers appear as a continuous spiral pattern that engulfs fragmented
ChN
pseudolayers, a defect to accommodate the cylindrical confinement of the mesophase. These results are useful for understanding the fundamentals of self-assembling systems and development of new technologies.
The self-assembly of cellulose nanocrystals (CNCs) was studied in square capillaries. Confinement causes CNCs to form central defects surrounded by concentric chiral nematic layers that depend on the size of the capillary. |
doi_str_mv | 10.1039/d3nr02650g |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2864476086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864476086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-a682a1cb27df5e4ab6ae1aa723b5b742cba14b645a6f5832aa247807a8c2812c3</originalsourceid><addsrcrecordid>eNpd0EtLAzEUBeAgCtbqxr0QcCPCaF6TzCyl2ioUBR_r4SbNyJR00ubOLPrvnVpRcHXv4uNwOIScc3bDmSxvF7JNTOicfR6QkWCKZVIacfj7a3VMThCXjOlSajki0zcf6gwQ_cqGLY01dT6EPkT0tIU2urTFDgJSF9u6af2CdpHipofkqYN1EwKkxuMpOaoH5c9-7ph8TB_eJ4_Z_GX2NLmbZ05y1WWgCwHcWWEWde4VWA2eAxghbW6NEs4CV1arHHSdF1IACGUKZqBwouDCyTG52ueuU9z0Hrtq1eCuMbQ-9liJIteSl6VhA738R5exT-3QblBaKaNZoQd1vVcuRcTk62qdmhWkbcVZtZu0upfPr9-TzgZ8sccJ3a_7m1x-AW6Dctc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864476086</pqid></control><display><type>article</type><title>Self-assembly of cellulose nanocrystals confined to square capillaries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Ackroyd, Amanda J ; De Paolis, Adam ; Xu, Yi-Tao ; Momeni, Arash ; Hamad, Wadood Y ; MacLachlan, Mark J</creator><creatorcontrib>Ackroyd, Amanda J ; De Paolis, Adam ; Xu, Yi-Tao ; Momeni, Arash ; Hamad, Wadood Y ; MacLachlan, Mark J</creatorcontrib><description>Biological systems exploit restricted degrees of freedom to drive self-assembly of nano- and microarchitectures. Simplified systems, such as colloidal nanoparticles that behave as lyotropic liquid crystalline mesophases in confined geometric spaces, may be used to mimic biological structures. Cellulose nanocrystals (CNCs) are colloidally stable nanoparticles that self-assemble into chiral nematic (
ChN
) liquid crystalline mesophases. To date, the self-assembly of
ChN
mesophases of CNCs has been studied under confinement conditions within curved surfaces or under drying conditions that impose curvatures that can be exploited to control
ChN
ordering; however, their self-assembly has not been investigated in geometries with square cross-sections under static conditions. Here, we show that because of surface anchoring on perpendicular surfaces, the
ChN
CNC phase is unable to bend with the 90° angle of the square capillary under increasing confinement. Instead, the
ChN
phase forms radial layers in the shape of concentric squircle shells. With increasing layer distance from the capillary wall, the squircles transition into concentric cylinder shells. In larger capillaries, the radial shell layers appear as a continuous spiral pattern that engulfs fragmented
ChN
pseudolayers, a defect to accommodate the cylindrical confinement of the mesophase. These results are useful for understanding the fundamentals of self-assembling systems and development of new technologies.
The self-assembly of cellulose nanocrystals (CNCs) was studied in square capillaries. Confinement causes CNCs to form central defects surrounded by concentric chiral nematic layers that depend on the size of the capillary.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d3nr02650g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Blood vessels ; Capillaries ; Cellulose ; Computer architecture ; Concentric cylinders ; Confinement ; Crystal defects ; Liquid crystals ; Mesophase ; Nanocrystals ; Nanoparticles ; Nematic crystals ; New technology ; Self-assembly</subject><ispartof>Nanoscale, 2023-09, Vol.15 (35), p.14388-14398</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-a682a1cb27df5e4ab6ae1aa723b5b742cba14b645a6f5832aa247807a8c2812c3</citedby><cites>FETCH-LOGICAL-c314t-a682a1cb27df5e4ab6ae1aa723b5b742cba14b645a6f5832aa247807a8c2812c3</cites><orcidid>0000-0002-3546-7132 ; 0000-0003-1376-5865 ; 0000-0001-6261-8701</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ackroyd, Amanda J</creatorcontrib><creatorcontrib>De Paolis, Adam</creatorcontrib><creatorcontrib>Xu, Yi-Tao</creatorcontrib><creatorcontrib>Momeni, Arash</creatorcontrib><creatorcontrib>Hamad, Wadood Y</creatorcontrib><creatorcontrib>MacLachlan, Mark J</creatorcontrib><title>Self-assembly of cellulose nanocrystals confined to square capillaries</title><title>Nanoscale</title><description>Biological systems exploit restricted degrees of freedom to drive self-assembly of nano- and microarchitectures. Simplified systems, such as colloidal nanoparticles that behave as lyotropic liquid crystalline mesophases in confined geometric spaces, may be used to mimic biological structures. Cellulose nanocrystals (CNCs) are colloidally stable nanoparticles that self-assemble into chiral nematic (
ChN
) liquid crystalline mesophases. To date, the self-assembly of
ChN
mesophases of CNCs has been studied under confinement conditions within curved surfaces or under drying conditions that impose curvatures that can be exploited to control
ChN
ordering; however, their self-assembly has not been investigated in geometries with square cross-sections under static conditions. Here, we show that because of surface anchoring on perpendicular surfaces, the
ChN
CNC phase is unable to bend with the 90° angle of the square capillary under increasing confinement. Instead, the
ChN
phase forms radial layers in the shape of concentric squircle shells. With increasing layer distance from the capillary wall, the squircles transition into concentric cylinder shells. In larger capillaries, the radial shell layers appear as a continuous spiral pattern that engulfs fragmented
ChN
pseudolayers, a defect to accommodate the cylindrical confinement of the mesophase. These results are useful for understanding the fundamentals of self-assembling systems and development of new technologies.
The self-assembly of cellulose nanocrystals (CNCs) was studied in square capillaries. Confinement causes CNCs to form central defects surrounded by concentric chiral nematic layers that depend on the size of the capillary.</description><subject>Blood vessels</subject><subject>Capillaries</subject><subject>Cellulose</subject><subject>Computer architecture</subject><subject>Concentric cylinders</subject><subject>Confinement</subject><subject>Crystal defects</subject><subject>Liquid crystals</subject><subject>Mesophase</subject><subject>Nanocrystals</subject><subject>Nanoparticles</subject><subject>Nematic crystals</subject><subject>New technology</subject><subject>Self-assembly</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0EtLAzEUBeAgCtbqxr0QcCPCaF6TzCyl2ioUBR_r4SbNyJR00ubOLPrvnVpRcHXv4uNwOIScc3bDmSxvF7JNTOicfR6QkWCKZVIacfj7a3VMThCXjOlSajki0zcf6gwQ_cqGLY01dT6EPkT0tIU2urTFDgJSF9u6af2CdpHipofkqYN1EwKkxuMpOaoH5c9-7ph8TB_eJ4_Z_GX2NLmbZ05y1WWgCwHcWWEWde4VWA2eAxghbW6NEs4CV1arHHSdF1IACGUKZqBwouDCyTG52ueuU9z0Hrtq1eCuMbQ-9liJIteSl6VhA738R5exT-3QblBaKaNZoQd1vVcuRcTk62qdmhWkbcVZtZu0upfPr9-TzgZ8sccJ3a_7m1x-AW6Dctc</recordid><startdate>20230914</startdate><enddate>20230914</enddate><creator>Ackroyd, Amanda J</creator><creator>De Paolis, Adam</creator><creator>Xu, Yi-Tao</creator><creator>Momeni, Arash</creator><creator>Hamad, Wadood Y</creator><creator>MacLachlan, Mark J</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3546-7132</orcidid><orcidid>https://orcid.org/0000-0003-1376-5865</orcidid><orcidid>https://orcid.org/0000-0001-6261-8701</orcidid></search><sort><creationdate>20230914</creationdate><title>Self-assembly of cellulose nanocrystals confined to square capillaries</title><author>Ackroyd, Amanda J ; De Paolis, Adam ; Xu, Yi-Tao ; Momeni, Arash ; Hamad, Wadood Y ; MacLachlan, Mark J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-a682a1cb27df5e4ab6ae1aa723b5b742cba14b645a6f5832aa247807a8c2812c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Blood vessels</topic><topic>Capillaries</topic><topic>Cellulose</topic><topic>Computer architecture</topic><topic>Concentric cylinders</topic><topic>Confinement</topic><topic>Crystal defects</topic><topic>Liquid crystals</topic><topic>Mesophase</topic><topic>Nanocrystals</topic><topic>Nanoparticles</topic><topic>Nematic crystals</topic><topic>New technology</topic><topic>Self-assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ackroyd, Amanda J</creatorcontrib><creatorcontrib>De Paolis, Adam</creatorcontrib><creatorcontrib>Xu, Yi-Tao</creatorcontrib><creatorcontrib>Momeni, Arash</creatorcontrib><creatorcontrib>Hamad, Wadood Y</creatorcontrib><creatorcontrib>MacLachlan, Mark J</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ackroyd, Amanda J</au><au>De Paolis, Adam</au><au>Xu, Yi-Tao</au><au>Momeni, Arash</au><au>Hamad, Wadood Y</au><au>MacLachlan, Mark J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-assembly of cellulose nanocrystals confined to square capillaries</atitle><jtitle>Nanoscale</jtitle><date>2023-09-14</date><risdate>2023</risdate><volume>15</volume><issue>35</issue><spage>14388</spage><epage>14398</epage><pages>14388-14398</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Biological systems exploit restricted degrees of freedom to drive self-assembly of nano- and microarchitectures. Simplified systems, such as colloidal nanoparticles that behave as lyotropic liquid crystalline mesophases in confined geometric spaces, may be used to mimic biological structures. Cellulose nanocrystals (CNCs) are colloidally stable nanoparticles that self-assemble into chiral nematic (
ChN
) liquid crystalline mesophases. To date, the self-assembly of
ChN
mesophases of CNCs has been studied under confinement conditions within curved surfaces or under drying conditions that impose curvatures that can be exploited to control
ChN
ordering; however, their self-assembly has not been investigated in geometries with square cross-sections under static conditions. Here, we show that because of surface anchoring on perpendicular surfaces, the
ChN
CNC phase is unable to bend with the 90° angle of the square capillary under increasing confinement. Instead, the
ChN
phase forms radial layers in the shape of concentric squircle shells. With increasing layer distance from the capillary wall, the squircles transition into concentric cylinder shells. In larger capillaries, the radial shell layers appear as a continuous spiral pattern that engulfs fragmented
ChN
pseudolayers, a defect to accommodate the cylindrical confinement of the mesophase. These results are useful for understanding the fundamentals of self-assembling systems and development of new technologies.
The self-assembly of cellulose nanocrystals (CNCs) was studied in square capillaries. Confinement causes CNCs to form central defects surrounded by concentric chiral nematic layers that depend on the size of the capillary.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3nr02650g</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3546-7132</orcidid><orcidid>https://orcid.org/0000-0003-1376-5865</orcidid><orcidid>https://orcid.org/0000-0001-6261-8701</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2023-09, Vol.15 (35), p.14388-14398 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_journals_2864476086 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Blood vessels Capillaries Cellulose Computer architecture Concentric cylinders Confinement Crystal defects Liquid crystals Mesophase Nanocrystals Nanoparticles Nematic crystals New technology Self-assembly |
title | Self-assembly of cellulose nanocrystals confined to square capillaries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A45%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-assembly%20of%20cellulose%20nanocrystals%20confined%20to%20square%20capillaries&rft.jtitle=Nanoscale&rft.au=Ackroyd,%20Amanda%20J&rft.date=2023-09-14&rft.volume=15&rft.issue=35&rft.spage=14388&rft.epage=14398&rft.pages=14388-14398&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d3nr02650g&rft_dat=%3Cproquest_cross%3E2864476086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864476086&rft_id=info:pmid/&rfr_iscdi=true |