Self-assembly of cellulose nanocrystals confined to square capillaries

Biological systems exploit restricted degrees of freedom to drive self-assembly of nano- and microarchitectures. Simplified systems, such as colloidal nanoparticles that behave as lyotropic liquid crystalline mesophases in confined geometric spaces, may be used to mimic biological structures. Cellul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2023-09, Vol.15 (35), p.14388-14398
Hauptverfasser: Ackroyd, Amanda J, De Paolis, Adam, Xu, Yi-Tao, Momeni, Arash, Hamad, Wadood Y, MacLachlan, Mark J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14398
container_issue 35
container_start_page 14388
container_title Nanoscale
container_volume 15
creator Ackroyd, Amanda J
De Paolis, Adam
Xu, Yi-Tao
Momeni, Arash
Hamad, Wadood Y
MacLachlan, Mark J
description Biological systems exploit restricted degrees of freedom to drive self-assembly of nano- and microarchitectures. Simplified systems, such as colloidal nanoparticles that behave as lyotropic liquid crystalline mesophases in confined geometric spaces, may be used to mimic biological structures. Cellulose nanocrystals (CNCs) are colloidally stable nanoparticles that self-assemble into chiral nematic ( ChN ) liquid crystalline mesophases. To date, the self-assembly of ChN mesophases of CNCs has been studied under confinement conditions within curved surfaces or under drying conditions that impose curvatures that can be exploited to control ChN ordering; however, their self-assembly has not been investigated in geometries with square cross-sections under static conditions. Here, we show that because of surface anchoring on perpendicular surfaces, the ChN CNC phase is unable to bend with the 90° angle of the square capillary under increasing confinement. Instead, the ChN phase forms radial layers in the shape of concentric squircle shells. With increasing layer distance from the capillary wall, the squircles transition into concentric cylinder shells. In larger capillaries, the radial shell layers appear as a continuous spiral pattern that engulfs fragmented ChN pseudolayers, a defect to accommodate the cylindrical confinement of the mesophase. These results are useful for understanding the fundamentals of self-assembling systems and development of new technologies. The self-assembly of cellulose nanocrystals (CNCs) was studied in square capillaries. Confinement causes CNCs to form central defects surrounded by concentric chiral nematic layers that depend on the size of the capillary.
doi_str_mv 10.1039/d3nr02650g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2864476086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864476086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-a682a1cb27df5e4ab6ae1aa723b5b742cba14b645a6f5832aa247807a8c2812c3</originalsourceid><addsrcrecordid>eNpd0EtLAzEUBeAgCtbqxr0QcCPCaF6TzCyl2ioUBR_r4SbNyJR00ubOLPrvnVpRcHXv4uNwOIScc3bDmSxvF7JNTOicfR6QkWCKZVIacfj7a3VMThCXjOlSajki0zcf6gwQ_cqGLY01dT6EPkT0tIU2urTFDgJSF9u6af2CdpHipofkqYN1EwKkxuMpOaoH5c9-7ph8TB_eJ4_Z_GX2NLmbZ05y1WWgCwHcWWEWde4VWA2eAxghbW6NEs4CV1arHHSdF1IACGUKZqBwouDCyTG52ueuU9z0Hrtq1eCuMbQ-9liJIteSl6VhA738R5exT-3QblBaKaNZoQd1vVcuRcTk62qdmhWkbcVZtZu0upfPr9-TzgZ8sccJ3a_7m1x-AW6Dctc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864476086</pqid></control><display><type>article</type><title>Self-assembly of cellulose nanocrystals confined to square capillaries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Ackroyd, Amanda J ; De Paolis, Adam ; Xu, Yi-Tao ; Momeni, Arash ; Hamad, Wadood Y ; MacLachlan, Mark J</creator><creatorcontrib>Ackroyd, Amanda J ; De Paolis, Adam ; Xu, Yi-Tao ; Momeni, Arash ; Hamad, Wadood Y ; MacLachlan, Mark J</creatorcontrib><description>Biological systems exploit restricted degrees of freedom to drive self-assembly of nano- and microarchitectures. Simplified systems, such as colloidal nanoparticles that behave as lyotropic liquid crystalline mesophases in confined geometric spaces, may be used to mimic biological structures. Cellulose nanocrystals (CNCs) are colloidally stable nanoparticles that self-assemble into chiral nematic ( ChN ) liquid crystalline mesophases. To date, the self-assembly of ChN mesophases of CNCs has been studied under confinement conditions within curved surfaces or under drying conditions that impose curvatures that can be exploited to control ChN ordering; however, their self-assembly has not been investigated in geometries with square cross-sections under static conditions. Here, we show that because of surface anchoring on perpendicular surfaces, the ChN CNC phase is unable to bend with the 90° angle of the square capillary under increasing confinement. Instead, the ChN phase forms radial layers in the shape of concentric squircle shells. With increasing layer distance from the capillary wall, the squircles transition into concentric cylinder shells. In larger capillaries, the radial shell layers appear as a continuous spiral pattern that engulfs fragmented ChN pseudolayers, a defect to accommodate the cylindrical confinement of the mesophase. These results are useful for understanding the fundamentals of self-assembling systems and development of new technologies. The self-assembly of cellulose nanocrystals (CNCs) was studied in square capillaries. Confinement causes CNCs to form central defects surrounded by concentric chiral nematic layers that depend on the size of the capillary.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d3nr02650g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Blood vessels ; Capillaries ; Cellulose ; Computer architecture ; Concentric cylinders ; Confinement ; Crystal defects ; Liquid crystals ; Mesophase ; Nanocrystals ; Nanoparticles ; Nematic crystals ; New technology ; Self-assembly</subject><ispartof>Nanoscale, 2023-09, Vol.15 (35), p.14388-14398</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-a682a1cb27df5e4ab6ae1aa723b5b742cba14b645a6f5832aa247807a8c2812c3</citedby><cites>FETCH-LOGICAL-c314t-a682a1cb27df5e4ab6ae1aa723b5b742cba14b645a6f5832aa247807a8c2812c3</cites><orcidid>0000-0002-3546-7132 ; 0000-0003-1376-5865 ; 0000-0001-6261-8701</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ackroyd, Amanda J</creatorcontrib><creatorcontrib>De Paolis, Adam</creatorcontrib><creatorcontrib>Xu, Yi-Tao</creatorcontrib><creatorcontrib>Momeni, Arash</creatorcontrib><creatorcontrib>Hamad, Wadood Y</creatorcontrib><creatorcontrib>MacLachlan, Mark J</creatorcontrib><title>Self-assembly of cellulose nanocrystals confined to square capillaries</title><title>Nanoscale</title><description>Biological systems exploit restricted degrees of freedom to drive self-assembly of nano- and microarchitectures. Simplified systems, such as colloidal nanoparticles that behave as lyotropic liquid crystalline mesophases in confined geometric spaces, may be used to mimic biological structures. Cellulose nanocrystals (CNCs) are colloidally stable nanoparticles that self-assemble into chiral nematic ( ChN ) liquid crystalline mesophases. To date, the self-assembly of ChN mesophases of CNCs has been studied under confinement conditions within curved surfaces or under drying conditions that impose curvatures that can be exploited to control ChN ordering; however, their self-assembly has not been investigated in geometries with square cross-sections under static conditions. Here, we show that because of surface anchoring on perpendicular surfaces, the ChN CNC phase is unable to bend with the 90° angle of the square capillary under increasing confinement. Instead, the ChN phase forms radial layers in the shape of concentric squircle shells. With increasing layer distance from the capillary wall, the squircles transition into concentric cylinder shells. In larger capillaries, the radial shell layers appear as a continuous spiral pattern that engulfs fragmented ChN pseudolayers, a defect to accommodate the cylindrical confinement of the mesophase. These results are useful for understanding the fundamentals of self-assembling systems and development of new technologies. The self-assembly of cellulose nanocrystals (CNCs) was studied in square capillaries. Confinement causes CNCs to form central defects surrounded by concentric chiral nematic layers that depend on the size of the capillary.</description><subject>Blood vessels</subject><subject>Capillaries</subject><subject>Cellulose</subject><subject>Computer architecture</subject><subject>Concentric cylinders</subject><subject>Confinement</subject><subject>Crystal defects</subject><subject>Liquid crystals</subject><subject>Mesophase</subject><subject>Nanocrystals</subject><subject>Nanoparticles</subject><subject>Nematic crystals</subject><subject>New technology</subject><subject>Self-assembly</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0EtLAzEUBeAgCtbqxr0QcCPCaF6TzCyl2ioUBR_r4SbNyJR00ubOLPrvnVpRcHXv4uNwOIScc3bDmSxvF7JNTOicfR6QkWCKZVIacfj7a3VMThCXjOlSajki0zcf6gwQ_cqGLY01dT6EPkT0tIU2urTFDgJSF9u6af2CdpHipofkqYN1EwKkxuMpOaoH5c9-7ph8TB_eJ4_Z_GX2NLmbZ05y1WWgCwHcWWEWde4VWA2eAxghbW6NEs4CV1arHHSdF1IACGUKZqBwouDCyTG52ueuU9z0Hrtq1eCuMbQ-9liJIteSl6VhA738R5exT-3QblBaKaNZoQd1vVcuRcTk62qdmhWkbcVZtZu0upfPr9-TzgZ8sccJ3a_7m1x-AW6Dctc</recordid><startdate>20230914</startdate><enddate>20230914</enddate><creator>Ackroyd, Amanda J</creator><creator>De Paolis, Adam</creator><creator>Xu, Yi-Tao</creator><creator>Momeni, Arash</creator><creator>Hamad, Wadood Y</creator><creator>MacLachlan, Mark J</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3546-7132</orcidid><orcidid>https://orcid.org/0000-0003-1376-5865</orcidid><orcidid>https://orcid.org/0000-0001-6261-8701</orcidid></search><sort><creationdate>20230914</creationdate><title>Self-assembly of cellulose nanocrystals confined to square capillaries</title><author>Ackroyd, Amanda J ; De Paolis, Adam ; Xu, Yi-Tao ; Momeni, Arash ; Hamad, Wadood Y ; MacLachlan, Mark J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-a682a1cb27df5e4ab6ae1aa723b5b742cba14b645a6f5832aa247807a8c2812c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Blood vessels</topic><topic>Capillaries</topic><topic>Cellulose</topic><topic>Computer architecture</topic><topic>Concentric cylinders</topic><topic>Confinement</topic><topic>Crystal defects</topic><topic>Liquid crystals</topic><topic>Mesophase</topic><topic>Nanocrystals</topic><topic>Nanoparticles</topic><topic>Nematic crystals</topic><topic>New technology</topic><topic>Self-assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ackroyd, Amanda J</creatorcontrib><creatorcontrib>De Paolis, Adam</creatorcontrib><creatorcontrib>Xu, Yi-Tao</creatorcontrib><creatorcontrib>Momeni, Arash</creatorcontrib><creatorcontrib>Hamad, Wadood Y</creatorcontrib><creatorcontrib>MacLachlan, Mark J</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ackroyd, Amanda J</au><au>De Paolis, Adam</au><au>Xu, Yi-Tao</au><au>Momeni, Arash</au><au>Hamad, Wadood Y</au><au>MacLachlan, Mark J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-assembly of cellulose nanocrystals confined to square capillaries</atitle><jtitle>Nanoscale</jtitle><date>2023-09-14</date><risdate>2023</risdate><volume>15</volume><issue>35</issue><spage>14388</spage><epage>14398</epage><pages>14388-14398</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Biological systems exploit restricted degrees of freedom to drive self-assembly of nano- and microarchitectures. Simplified systems, such as colloidal nanoparticles that behave as lyotropic liquid crystalline mesophases in confined geometric spaces, may be used to mimic biological structures. Cellulose nanocrystals (CNCs) are colloidally stable nanoparticles that self-assemble into chiral nematic ( ChN ) liquid crystalline mesophases. To date, the self-assembly of ChN mesophases of CNCs has been studied under confinement conditions within curved surfaces or under drying conditions that impose curvatures that can be exploited to control ChN ordering; however, their self-assembly has not been investigated in geometries with square cross-sections under static conditions. Here, we show that because of surface anchoring on perpendicular surfaces, the ChN CNC phase is unable to bend with the 90° angle of the square capillary under increasing confinement. Instead, the ChN phase forms radial layers in the shape of concentric squircle shells. With increasing layer distance from the capillary wall, the squircles transition into concentric cylinder shells. In larger capillaries, the radial shell layers appear as a continuous spiral pattern that engulfs fragmented ChN pseudolayers, a defect to accommodate the cylindrical confinement of the mesophase. These results are useful for understanding the fundamentals of self-assembling systems and development of new technologies. The self-assembly of cellulose nanocrystals (CNCs) was studied in square capillaries. Confinement causes CNCs to form central defects surrounded by concentric chiral nematic layers that depend on the size of the capillary.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3nr02650g</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3546-7132</orcidid><orcidid>https://orcid.org/0000-0003-1376-5865</orcidid><orcidid>https://orcid.org/0000-0001-6261-8701</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2023-09, Vol.15 (35), p.14388-14398
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_journals_2864476086
source Royal Society Of Chemistry Journals 2008-
subjects Blood vessels
Capillaries
Cellulose
Computer architecture
Concentric cylinders
Confinement
Crystal defects
Liquid crystals
Mesophase
Nanocrystals
Nanoparticles
Nematic crystals
New technology
Self-assembly
title Self-assembly of cellulose nanocrystals confined to square capillaries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A45%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-assembly%20of%20cellulose%20nanocrystals%20confined%20to%20square%20capillaries&rft.jtitle=Nanoscale&rft.au=Ackroyd,%20Amanda%20J&rft.date=2023-09-14&rft.volume=15&rft.issue=35&rft.spage=14388&rft.epage=14398&rft.pages=14388-14398&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d3nr02650g&rft_dat=%3Cproquest_cross%3E2864476086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864476086&rft_id=info:pmid/&rfr_iscdi=true