Introducing Bidirectional Axial Coordination into BiVO4@Metal Phthalocyanine Core–Shell Photoanodes for Efficient Water Oxidation
Core‐shell photoanodes have shown great potential for photoelectrochemical (PEC) water oxidation. However, the construction of a high‐quality interface between the core and shell, as well as a highly catalytic surface, remains a challenge. Herein, guided by computation, we present a BiVO4 photoanode...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2023-09, Vol.62 (38) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Core‐shell photoanodes have shown great potential for photoelectrochemical (PEC) water oxidation. However, the construction of a high‐quality interface between the core and shell, as well as a highly catalytic surface, remains a challenge. Herein, guided by computation, we present a BiVO4 photoanode coated with ZnCoFe polyphthalocyanine using pyrazine as a coordination agent. The bidirectional axial coordination of pyrazine plays a dual role by facilitating intimate interfacial contact between BiVO4 and ZnCoFe polyphthalocyanine, as well as regulating the electron density and spin configuration of metal sites in ZnCoFe phthalocyanine, thereby promoting the potential‐limiting step of *OOH desorption. The resulting photoanode displayed a high photocurrent density of 5.7±0.1 mA cm−2 at 1.23 VRHE. This study introduces a new approach for constructing core–shell photoanodes, and uncovers the key role of pyrazine axial coordination in modulating the catalytic activity of metal phthalocyanine. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.202307246 |