Sports analytics review: Artificial intelligence applications, emerging technologies, and algorithmic perspective

The rapid and impromptu interest in the coupling of machine learning (ML) algorithms with wearable and contactless sensors aimed at tackling real‐world problems warrants a pedagogical study to understand all the aspects of this research direction. Considering this aspect, this survey aims to review...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wiley interdisciplinary reviews. Data mining and knowledge discovery 2023-09, Vol.13 (5), p.e1496
Hauptverfasser: Ghosh, Indrajeet, Ramasamy Ramamurthy, Sreenivasan, Chakma, Avijoy, Roy, Nirmalya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page e1496
container_title Wiley interdisciplinary reviews. Data mining and knowledge discovery
container_volume 13
creator Ghosh, Indrajeet
Ramasamy Ramamurthy, Sreenivasan
Chakma, Avijoy
Roy, Nirmalya
description The rapid and impromptu interest in the coupling of machine learning (ML) algorithms with wearable and contactless sensors aimed at tackling real‐world problems warrants a pedagogical study to understand all the aspects of this research direction. Considering this aspect, this survey aims to review the state‐of‐the‐art literature on ML algorithms, methodologies, and hypotheses adopted to solve the research problems and challenges in the domain of sports. First, we categorize this study into three main research fields: sensors , computer vision , and wireless and mobile‐based applications . Then, for each of these fields, we thoroughly analyze the systems that are deployable for real‐time sports analytics. Next, we meticulously discuss the learning algorithms (e.g., statistical learning, deep learning, reinforcement learning) that power those deployable systems while also comparing and contrasting the benefits of those learning methodologies. Finally, we highlight the possible future open‐research opportunities and emerging technologies that could contribute to the domain of sports analytics. This article is categorized under: Technologies > Machine Learning Technologies > Artificial Intelligence Technologies > Internet of Things
doi_str_mv 10.1002/widm.1496
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2864453747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864453747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-ae4b926dde33f1f958b5fbcc69979d0d2f5c954e9e9c2ae6d1460184a83e553d3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhosoOHQX_oOAV4KdzVebeDeGXzDwQr0uWXLaZaRNl2Qb-_d2THxvzsvh4cB5suwOFzNcFOTpYE03w0yWF9kES0ZyVkl--d9FdZ1NY9wUYygRQpBJtv0afEgRqV65Y7I6ogB7C4dnNA_JNlZb5ZDtEzhnW-g1IDUMzmqVrO_jI4IOQmv7FiXQ694731oY16o3SLnWB5vWndVogBAH0Mnu4Ta7apSLMP2bN9nP68v34j1ffr59LObLXBNJUq6ArSQpjQFKG9xILla8WWldSllJUxjScC05AwlSEwWlwawssGBKUOCcGnqT3Z_vDsFvdxBTvfG7ML4ZayJKxjitWDVSD2dKBx9jgKYegu1UONa4qE9S65PU-iSV_gJvrG0r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864453747</pqid></control><display><type>article</type><title>Sports analytics review: Artificial intelligence applications, emerging technologies, and algorithmic perspective</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ghosh, Indrajeet ; Ramasamy Ramamurthy, Sreenivasan ; Chakma, Avijoy ; Roy, Nirmalya</creator><creatorcontrib>Ghosh, Indrajeet ; Ramasamy Ramamurthy, Sreenivasan ; Chakma, Avijoy ; Roy, Nirmalya</creatorcontrib><description>The rapid and impromptu interest in the coupling of machine learning (ML) algorithms with wearable and contactless sensors aimed at tackling real‐world problems warrants a pedagogical study to understand all the aspects of this research direction. Considering this aspect, this survey aims to review the state‐of‐the‐art literature on ML algorithms, methodologies, and hypotheses adopted to solve the research problems and challenges in the domain of sports. First, we categorize this study into three main research fields: sensors , computer vision , and wireless and mobile‐based applications . Then, for each of these fields, we thoroughly analyze the systems that are deployable for real‐time sports analytics. Next, we meticulously discuss the learning algorithms (e.g., statistical learning, deep learning, reinforcement learning) that power those deployable systems while also comparing and contrasting the benefits of those learning methodologies. Finally, we highlight the possible future open‐research opportunities and emerging technologies that could contribute to the domain of sports analytics. This article is categorized under: Technologies &gt; Machine Learning Technologies &gt; Artificial Intelligence Technologies &gt; Internet of Things</description><identifier>ISSN: 1942-4787</identifier><identifier>EISSN: 1942-4795</identifier><identifier>DOI: 10.1002/widm.1496</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Artificial intelligence ; Computer vision ; Deep learning ; Internet of Things ; Machine learning ; Mathematical analysis ; New technology ; Sensors</subject><ispartof>Wiley interdisciplinary reviews. Data mining and knowledge discovery, 2023-09, Vol.13 (5), p.e1496</ispartof><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-ae4b926dde33f1f958b5fbcc69979d0d2f5c954e9e9c2ae6d1460184a83e553d3</citedby><cites>FETCH-LOGICAL-c292t-ae4b926dde33f1f958b5fbcc69979d0d2f5c954e9e9c2ae6d1460184a83e553d3</cites><orcidid>0000-0003-2868-3766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ghosh, Indrajeet</creatorcontrib><creatorcontrib>Ramasamy Ramamurthy, Sreenivasan</creatorcontrib><creatorcontrib>Chakma, Avijoy</creatorcontrib><creatorcontrib>Roy, Nirmalya</creatorcontrib><title>Sports analytics review: Artificial intelligence applications, emerging technologies, and algorithmic perspective</title><title>Wiley interdisciplinary reviews. Data mining and knowledge discovery</title><description>The rapid and impromptu interest in the coupling of machine learning (ML) algorithms with wearable and contactless sensors aimed at tackling real‐world problems warrants a pedagogical study to understand all the aspects of this research direction. Considering this aspect, this survey aims to review the state‐of‐the‐art literature on ML algorithms, methodologies, and hypotheses adopted to solve the research problems and challenges in the domain of sports. First, we categorize this study into three main research fields: sensors , computer vision , and wireless and mobile‐based applications . Then, for each of these fields, we thoroughly analyze the systems that are deployable for real‐time sports analytics. Next, we meticulously discuss the learning algorithms (e.g., statistical learning, deep learning, reinforcement learning) that power those deployable systems while also comparing and contrasting the benefits of those learning methodologies. Finally, we highlight the possible future open‐research opportunities and emerging technologies that could contribute to the domain of sports analytics. This article is categorized under: Technologies &gt; Machine Learning Technologies &gt; Artificial Intelligence Technologies &gt; Internet of Things</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Computer vision</subject><subject>Deep learning</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>New technology</subject><subject>Sensors</subject><issn>1942-4787</issn><issn>1942-4795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhosoOHQX_oOAV4KdzVebeDeGXzDwQr0uWXLaZaRNl2Qb-_d2THxvzsvh4cB5suwOFzNcFOTpYE03w0yWF9kES0ZyVkl--d9FdZ1NY9wUYygRQpBJtv0afEgRqV65Y7I6ogB7C4dnNA_JNlZb5ZDtEzhnW-g1IDUMzmqVrO_jI4IOQmv7FiXQ694731oY16o3SLnWB5vWndVogBAH0Mnu4Ta7apSLMP2bN9nP68v34j1ffr59LObLXBNJUq6ArSQpjQFKG9xILla8WWldSllJUxjScC05AwlSEwWlwawssGBKUOCcGnqT3Z_vDsFvdxBTvfG7ML4ZayJKxjitWDVSD2dKBx9jgKYegu1UONa4qE9S65PU-iSV_gJvrG0r</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Ghosh, Indrajeet</creator><creator>Ramasamy Ramamurthy, Sreenivasan</creator><creator>Chakma, Avijoy</creator><creator>Roy, Nirmalya</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2868-3766</orcidid></search><sort><creationdate>202309</creationdate><title>Sports analytics review: Artificial intelligence applications, emerging technologies, and algorithmic perspective</title><author>Ghosh, Indrajeet ; Ramasamy Ramamurthy, Sreenivasan ; Chakma, Avijoy ; Roy, Nirmalya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-ae4b926dde33f1f958b5fbcc69979d0d2f5c954e9e9c2ae6d1460184a83e553d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Computer vision</topic><topic>Deep learning</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>New technology</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Indrajeet</creatorcontrib><creatorcontrib>Ramasamy Ramamurthy, Sreenivasan</creatorcontrib><creatorcontrib>Chakma, Avijoy</creatorcontrib><creatorcontrib>Roy, Nirmalya</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Wiley interdisciplinary reviews. Data mining and knowledge discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Indrajeet</au><au>Ramasamy Ramamurthy, Sreenivasan</au><au>Chakma, Avijoy</au><au>Roy, Nirmalya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sports analytics review: Artificial intelligence applications, emerging technologies, and algorithmic perspective</atitle><jtitle>Wiley interdisciplinary reviews. Data mining and knowledge discovery</jtitle><date>2023-09</date><risdate>2023</risdate><volume>13</volume><issue>5</issue><spage>e1496</spage><pages>e1496-</pages><issn>1942-4787</issn><eissn>1942-4795</eissn><abstract>The rapid and impromptu interest in the coupling of machine learning (ML) algorithms with wearable and contactless sensors aimed at tackling real‐world problems warrants a pedagogical study to understand all the aspects of this research direction. Considering this aspect, this survey aims to review the state‐of‐the‐art literature on ML algorithms, methodologies, and hypotheses adopted to solve the research problems and challenges in the domain of sports. First, we categorize this study into three main research fields: sensors , computer vision , and wireless and mobile‐based applications . Then, for each of these fields, we thoroughly analyze the systems that are deployable for real‐time sports analytics. Next, we meticulously discuss the learning algorithms (e.g., statistical learning, deep learning, reinforcement learning) that power those deployable systems while also comparing and contrasting the benefits of those learning methodologies. Finally, we highlight the possible future open‐research opportunities and emerging technologies that could contribute to the domain of sports analytics. This article is categorized under: Technologies &gt; Machine Learning Technologies &gt; Artificial Intelligence Technologies &gt; Internet of Things</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/widm.1496</doi><orcidid>https://orcid.org/0000-0003-2868-3766</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1942-4787
ispartof Wiley interdisciplinary reviews. Data mining and knowledge discovery, 2023-09, Vol.13 (5), p.e1496
issn 1942-4787
1942-4795
language eng
recordid cdi_proquest_journals_2864453747
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Artificial intelligence
Computer vision
Deep learning
Internet of Things
Machine learning
Mathematical analysis
New technology
Sensors
title Sports analytics review: Artificial intelligence applications, emerging technologies, and algorithmic perspective
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T14%3A57%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sports%20analytics%20review:%20Artificial%20intelligence%20applications,%20emerging%20technologies,%20and%20algorithmic%20perspective&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Data%20mining%20and%20knowledge%20discovery&rft.au=Ghosh,%20Indrajeet&rft.date=2023-09&rft.volume=13&rft.issue=5&rft.spage=e1496&rft.pages=e1496-&rft.issn=1942-4787&rft.eissn=1942-4795&rft_id=info:doi/10.1002/widm.1496&rft_dat=%3Cproquest_cross%3E2864453747%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864453747&rft_id=info:pmid/&rfr_iscdi=true