Robust Nonlinear Reduced-Order Model Predictive Control

Real-world systems are often characterized by high-dimensional nonlinear dynamics, making them challenging to control in real time. While reduced-order models (ROMs) are frequently employed in model-based control schemes, dimensionality reduction introduces model uncertainty which can potentially co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-09
Hauptverfasser: Alora, John Irvin, Pabon, Luis A, Köhler, Johannes, Cenedese, Mattia, Schmerling, Ed, Zeilinger, Melanie N, Haller, George, Pavone, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Alora, John Irvin
Pabon, Luis A
Köhler, Johannes
Cenedese, Mattia
Schmerling, Ed
Zeilinger, Melanie N
Haller, George
Pavone, Marco
description Real-world systems are often characterized by high-dimensional nonlinear dynamics, making them challenging to control in real time. While reduced-order models (ROMs) are frequently employed in model-based control schemes, dimensionality reduction introduces model uncertainty which can potentially compromise the stability and safety of the original high-dimensional system. In this work, we propose a novel reduced-order model predictive control (ROMPC) scheme to solve constrained optimal control problems for nonlinear, high-dimensional systems. To address the challenges of using ROMs in predictive control schemes, we derive an error bounding system that dynamically accounts for model reduction error. Using these bounds, we design a robust MPC scheme that ensures robust constraint satisfaction, recursive feasibility, and asymptotic stability. We demonstrate the effectiveness of our proposed method in simulations on a high-dimensional soft robot with nearly 10,000 states.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2864380833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864380833</sourcerecordid><originalsourceid>FETCH-proquest_journals_28643808333</originalsourceid><addsrcrecordid>eNqNyssKwjAQQNEgCBbtPwRcF2Kmj-yL4sYHxX2pzQgtIaOTxO_XhR_g6i7OXYhMA-wKU2q9EnkIs1JK142uKshE09E9hSjP5N3kcWDZoU0j2uLCFlmeyKKTV0Y7jXF6o2zJRya3EcvH4ALmv67F9rC_tcfiyfRKGGI_U2L_pV6bugSjDAD8d30A_E81oQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864380833</pqid></control><display><type>article</type><title>Robust Nonlinear Reduced-Order Model Predictive Control</title><source>Free E- Journals</source><creator>Alora, John Irvin ; Pabon, Luis A ; Köhler, Johannes ; Cenedese, Mattia ; Schmerling, Ed ; Zeilinger, Melanie N ; Haller, George ; Pavone, Marco</creator><creatorcontrib>Alora, John Irvin ; Pabon, Luis A ; Köhler, Johannes ; Cenedese, Mattia ; Schmerling, Ed ; Zeilinger, Melanie N ; Haller, George ; Pavone, Marco</creatorcontrib><description>Real-world systems are often characterized by high-dimensional nonlinear dynamics, making them challenging to control in real time. While reduced-order models (ROMs) are frequently employed in model-based control schemes, dimensionality reduction introduces model uncertainty which can potentially compromise the stability and safety of the original high-dimensional system. In this work, we propose a novel reduced-order model predictive control (ROMPC) scheme to solve constrained optimal control problems for nonlinear, high-dimensional systems. To address the challenges of using ROMs in predictive control schemes, we derive an error bounding system that dynamically accounts for model reduction error. Using these bounds, we design a robust MPC scheme that ensures robust constraint satisfaction, recursive feasibility, and asymptotic stability. We demonstrate the effectiveness of our proposed method in simulations on a high-dimensional soft robot with nearly 10,000 states.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic methods ; Constraints ; Control systems ; Dynamical systems ; Error reduction ; Model reduction ; Nonlinear control ; Nonlinear dynamics ; Nonlinear systems ; Optimal control ; Predictive control ; Reduced order models ; Robustness ; Stability</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Alora, John Irvin</creatorcontrib><creatorcontrib>Pabon, Luis A</creatorcontrib><creatorcontrib>Köhler, Johannes</creatorcontrib><creatorcontrib>Cenedese, Mattia</creatorcontrib><creatorcontrib>Schmerling, Ed</creatorcontrib><creatorcontrib>Zeilinger, Melanie N</creatorcontrib><creatorcontrib>Haller, George</creatorcontrib><creatorcontrib>Pavone, Marco</creatorcontrib><title>Robust Nonlinear Reduced-Order Model Predictive Control</title><title>arXiv.org</title><description>Real-world systems are often characterized by high-dimensional nonlinear dynamics, making them challenging to control in real time. While reduced-order models (ROMs) are frequently employed in model-based control schemes, dimensionality reduction introduces model uncertainty which can potentially compromise the stability and safety of the original high-dimensional system. In this work, we propose a novel reduced-order model predictive control (ROMPC) scheme to solve constrained optimal control problems for nonlinear, high-dimensional systems. To address the challenges of using ROMs in predictive control schemes, we derive an error bounding system that dynamically accounts for model reduction error. Using these bounds, we design a robust MPC scheme that ensures robust constraint satisfaction, recursive feasibility, and asymptotic stability. We demonstrate the effectiveness of our proposed method in simulations on a high-dimensional soft robot with nearly 10,000 states.</description><subject>Asymptotic methods</subject><subject>Constraints</subject><subject>Control systems</subject><subject>Dynamical systems</subject><subject>Error reduction</subject><subject>Model reduction</subject><subject>Nonlinear control</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Optimal control</subject><subject>Predictive control</subject><subject>Reduced order models</subject><subject>Robustness</subject><subject>Stability</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyssKwjAQQNEgCBbtPwRcF2Kmj-yL4sYHxX2pzQgtIaOTxO_XhR_g6i7OXYhMA-wKU2q9EnkIs1JK142uKshE09E9hSjP5N3kcWDZoU0j2uLCFlmeyKKTV0Y7jXF6o2zJRya3EcvH4ALmv67F9rC_tcfiyfRKGGI_U2L_pV6bugSjDAD8d30A_E81oQ</recordid><startdate>20230911</startdate><enddate>20230911</enddate><creator>Alora, John Irvin</creator><creator>Pabon, Luis A</creator><creator>Köhler, Johannes</creator><creator>Cenedese, Mattia</creator><creator>Schmerling, Ed</creator><creator>Zeilinger, Melanie N</creator><creator>Haller, George</creator><creator>Pavone, Marco</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230911</creationdate><title>Robust Nonlinear Reduced-Order Model Predictive Control</title><author>Alora, John Irvin ; Pabon, Luis A ; Köhler, Johannes ; Cenedese, Mattia ; Schmerling, Ed ; Zeilinger, Melanie N ; Haller, George ; Pavone, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28643808333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic methods</topic><topic>Constraints</topic><topic>Control systems</topic><topic>Dynamical systems</topic><topic>Error reduction</topic><topic>Model reduction</topic><topic>Nonlinear control</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Optimal control</topic><topic>Predictive control</topic><topic>Reduced order models</topic><topic>Robustness</topic><topic>Stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Alora, John Irvin</creatorcontrib><creatorcontrib>Pabon, Luis A</creatorcontrib><creatorcontrib>Köhler, Johannes</creatorcontrib><creatorcontrib>Cenedese, Mattia</creatorcontrib><creatorcontrib>Schmerling, Ed</creatorcontrib><creatorcontrib>Zeilinger, Melanie N</creatorcontrib><creatorcontrib>Haller, George</creatorcontrib><creatorcontrib>Pavone, Marco</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alora, John Irvin</au><au>Pabon, Luis A</au><au>Köhler, Johannes</au><au>Cenedese, Mattia</au><au>Schmerling, Ed</au><au>Zeilinger, Melanie N</au><au>Haller, George</au><au>Pavone, Marco</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Robust Nonlinear Reduced-Order Model Predictive Control</atitle><jtitle>arXiv.org</jtitle><date>2023-09-11</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Real-world systems are often characterized by high-dimensional nonlinear dynamics, making them challenging to control in real time. While reduced-order models (ROMs) are frequently employed in model-based control schemes, dimensionality reduction introduces model uncertainty which can potentially compromise the stability and safety of the original high-dimensional system. In this work, we propose a novel reduced-order model predictive control (ROMPC) scheme to solve constrained optimal control problems for nonlinear, high-dimensional systems. To address the challenges of using ROMs in predictive control schemes, we derive an error bounding system that dynamically accounts for model reduction error. Using these bounds, we design a robust MPC scheme that ensures robust constraint satisfaction, recursive feasibility, and asymptotic stability. We demonstrate the effectiveness of our proposed method in simulations on a high-dimensional soft robot with nearly 10,000 states.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2864380833
source Free E- Journals
subjects Asymptotic methods
Constraints
Control systems
Dynamical systems
Error reduction
Model reduction
Nonlinear control
Nonlinear dynamics
Nonlinear systems
Optimal control
Predictive control
Reduced order models
Robustness
Stability
title Robust Nonlinear Reduced-Order Model Predictive Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Robust%20Nonlinear%20Reduced-Order%20Model%20Predictive%20Control&rft.jtitle=arXiv.org&rft.au=Alora,%20John%20Irvin&rft.date=2023-09-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2864380833%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864380833&rft_id=info:pmid/&rfr_iscdi=true