Robust Nonlinear Reduced-Order Model Predictive Control
Real-world systems are often characterized by high-dimensional nonlinear dynamics, making them challenging to control in real time. While reduced-order models (ROMs) are frequently employed in model-based control schemes, dimensionality reduction introduces model uncertainty which can potentially co...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-09 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Alora, John Irvin Pabon, Luis A Köhler, Johannes Cenedese, Mattia Schmerling, Ed Zeilinger, Melanie N Haller, George Pavone, Marco |
description | Real-world systems are often characterized by high-dimensional nonlinear dynamics, making them challenging to control in real time. While reduced-order models (ROMs) are frequently employed in model-based control schemes, dimensionality reduction introduces model uncertainty which can potentially compromise the stability and safety of the original high-dimensional system. In this work, we propose a novel reduced-order model predictive control (ROMPC) scheme to solve constrained optimal control problems for nonlinear, high-dimensional systems. To address the challenges of using ROMs in predictive control schemes, we derive an error bounding system that dynamically accounts for model reduction error. Using these bounds, we design a robust MPC scheme that ensures robust constraint satisfaction, recursive feasibility, and asymptotic stability. We demonstrate the effectiveness of our proposed method in simulations on a high-dimensional soft robot with nearly 10,000 states. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2864380833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864380833</sourcerecordid><originalsourceid>FETCH-proquest_journals_28643808333</originalsourceid><addsrcrecordid>eNqNyssKwjAQQNEgCBbtPwRcF2Kmj-yL4sYHxX2pzQgtIaOTxO_XhR_g6i7OXYhMA-wKU2q9EnkIs1JK142uKshE09E9hSjP5N3kcWDZoU0j2uLCFlmeyKKTV0Y7jXF6o2zJRya3EcvH4ALmv67F9rC_tcfiyfRKGGI_U2L_pV6bugSjDAD8d30A_E81oQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864380833</pqid></control><display><type>article</type><title>Robust Nonlinear Reduced-Order Model Predictive Control</title><source>Free E- Journals</source><creator>Alora, John Irvin ; Pabon, Luis A ; Köhler, Johannes ; Cenedese, Mattia ; Schmerling, Ed ; Zeilinger, Melanie N ; Haller, George ; Pavone, Marco</creator><creatorcontrib>Alora, John Irvin ; Pabon, Luis A ; Köhler, Johannes ; Cenedese, Mattia ; Schmerling, Ed ; Zeilinger, Melanie N ; Haller, George ; Pavone, Marco</creatorcontrib><description>Real-world systems are often characterized by high-dimensional nonlinear dynamics, making them challenging to control in real time. While reduced-order models (ROMs) are frequently employed in model-based control schemes, dimensionality reduction introduces model uncertainty which can potentially compromise the stability and safety of the original high-dimensional system. In this work, we propose a novel reduced-order model predictive control (ROMPC) scheme to solve constrained optimal control problems for nonlinear, high-dimensional systems. To address the challenges of using ROMs in predictive control schemes, we derive an error bounding system that dynamically accounts for model reduction error. Using these bounds, we design a robust MPC scheme that ensures robust constraint satisfaction, recursive feasibility, and asymptotic stability. We demonstrate the effectiveness of our proposed method in simulations on a high-dimensional soft robot with nearly 10,000 states.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic methods ; Constraints ; Control systems ; Dynamical systems ; Error reduction ; Model reduction ; Nonlinear control ; Nonlinear dynamics ; Nonlinear systems ; Optimal control ; Predictive control ; Reduced order models ; Robustness ; Stability</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Alora, John Irvin</creatorcontrib><creatorcontrib>Pabon, Luis A</creatorcontrib><creatorcontrib>Köhler, Johannes</creatorcontrib><creatorcontrib>Cenedese, Mattia</creatorcontrib><creatorcontrib>Schmerling, Ed</creatorcontrib><creatorcontrib>Zeilinger, Melanie N</creatorcontrib><creatorcontrib>Haller, George</creatorcontrib><creatorcontrib>Pavone, Marco</creatorcontrib><title>Robust Nonlinear Reduced-Order Model Predictive Control</title><title>arXiv.org</title><description>Real-world systems are often characterized by high-dimensional nonlinear dynamics, making them challenging to control in real time. While reduced-order models (ROMs) are frequently employed in model-based control schemes, dimensionality reduction introduces model uncertainty which can potentially compromise the stability and safety of the original high-dimensional system. In this work, we propose a novel reduced-order model predictive control (ROMPC) scheme to solve constrained optimal control problems for nonlinear, high-dimensional systems. To address the challenges of using ROMs in predictive control schemes, we derive an error bounding system that dynamically accounts for model reduction error. Using these bounds, we design a robust MPC scheme that ensures robust constraint satisfaction, recursive feasibility, and asymptotic stability. We demonstrate the effectiveness of our proposed method in simulations on a high-dimensional soft robot with nearly 10,000 states.</description><subject>Asymptotic methods</subject><subject>Constraints</subject><subject>Control systems</subject><subject>Dynamical systems</subject><subject>Error reduction</subject><subject>Model reduction</subject><subject>Nonlinear control</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Optimal control</subject><subject>Predictive control</subject><subject>Reduced order models</subject><subject>Robustness</subject><subject>Stability</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyssKwjAQQNEgCBbtPwRcF2Kmj-yL4sYHxX2pzQgtIaOTxO_XhR_g6i7OXYhMA-wKU2q9EnkIs1JK142uKshE09E9hSjP5N3kcWDZoU0j2uLCFlmeyKKTV0Y7jXF6o2zJRya3EcvH4ALmv67F9rC_tcfiyfRKGGI_U2L_pV6bugSjDAD8d30A_E81oQ</recordid><startdate>20230911</startdate><enddate>20230911</enddate><creator>Alora, John Irvin</creator><creator>Pabon, Luis A</creator><creator>Köhler, Johannes</creator><creator>Cenedese, Mattia</creator><creator>Schmerling, Ed</creator><creator>Zeilinger, Melanie N</creator><creator>Haller, George</creator><creator>Pavone, Marco</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230911</creationdate><title>Robust Nonlinear Reduced-Order Model Predictive Control</title><author>Alora, John Irvin ; Pabon, Luis A ; Köhler, Johannes ; Cenedese, Mattia ; Schmerling, Ed ; Zeilinger, Melanie N ; Haller, George ; Pavone, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28643808333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic methods</topic><topic>Constraints</topic><topic>Control systems</topic><topic>Dynamical systems</topic><topic>Error reduction</topic><topic>Model reduction</topic><topic>Nonlinear control</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Optimal control</topic><topic>Predictive control</topic><topic>Reduced order models</topic><topic>Robustness</topic><topic>Stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Alora, John Irvin</creatorcontrib><creatorcontrib>Pabon, Luis A</creatorcontrib><creatorcontrib>Köhler, Johannes</creatorcontrib><creatorcontrib>Cenedese, Mattia</creatorcontrib><creatorcontrib>Schmerling, Ed</creatorcontrib><creatorcontrib>Zeilinger, Melanie N</creatorcontrib><creatorcontrib>Haller, George</creatorcontrib><creatorcontrib>Pavone, Marco</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alora, John Irvin</au><au>Pabon, Luis A</au><au>Köhler, Johannes</au><au>Cenedese, Mattia</au><au>Schmerling, Ed</au><au>Zeilinger, Melanie N</au><au>Haller, George</au><au>Pavone, Marco</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Robust Nonlinear Reduced-Order Model Predictive Control</atitle><jtitle>arXiv.org</jtitle><date>2023-09-11</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Real-world systems are often characterized by high-dimensional nonlinear dynamics, making them challenging to control in real time. While reduced-order models (ROMs) are frequently employed in model-based control schemes, dimensionality reduction introduces model uncertainty which can potentially compromise the stability and safety of the original high-dimensional system. In this work, we propose a novel reduced-order model predictive control (ROMPC) scheme to solve constrained optimal control problems for nonlinear, high-dimensional systems. To address the challenges of using ROMs in predictive control schemes, we derive an error bounding system that dynamically accounts for model reduction error. Using these bounds, we design a robust MPC scheme that ensures robust constraint satisfaction, recursive feasibility, and asymptotic stability. We demonstrate the effectiveness of our proposed method in simulations on a high-dimensional soft robot with nearly 10,000 states.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2864380833 |
source | Free E- Journals |
subjects | Asymptotic methods Constraints Control systems Dynamical systems Error reduction Model reduction Nonlinear control Nonlinear dynamics Nonlinear systems Optimal control Predictive control Reduced order models Robustness Stability |
title | Robust Nonlinear Reduced-Order Model Predictive Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Robust%20Nonlinear%20Reduced-Order%20Model%20Predictive%20Control&rft.jtitle=arXiv.org&rft.au=Alora,%20John%20Irvin&rft.date=2023-09-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2864380833%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864380833&rft_id=info:pmid/&rfr_iscdi=true |