Thermal activation of dry sliding friction at the nano-scale
Molecular dynamic (MD) simulations are applied to investigate the dependency of the kinetic friction coefficient on the temperature at the nano-scale. The system is comprised of an aluminum spherical particle consisting of 32000 atoms in an FCC lattice sliding on a stack of several layers of graphen...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2899 |
creator | Kheiri, Rasoul Tsukanov, Alexey A. |
description | Molecular dynamic (MD) simulations are applied to investigate the dependency of the kinetic friction coefficient on the temperature at the nano-scale. The system is comprised of an aluminum spherical particle consisting of 32000 atoms in an FCC lattice sliding on a stack of several layers of graphene, and the simulations have done using LAMMPS. The interaction potential is charge-optimized many-body (COMB3) potential and a Langevin thermostat keep the system at a nearly constant temperature. With an assumption of linear viscous friction, Ffr = -γν, the kinetic friction coefficient γ is derived and plotted at different temperatures in the interval of T ∈ [1, 600] K. As a result, by increasing temperature, the kinetic friction coefficient is decreased. Consequently, while the friction is assumed as a linear viscous model, the results are similar to the thermal activation in atomic-scale friction. That is, (1) by increasing sliding velocity friction force will be increased and (2) by increasing temperature, kinetic friction coefficient decreases. |
doi_str_mv | 10.1063/5.0163220 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2864353707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864353707</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-878d51f9e0e44b91390448e700a7d05d8b9be757704f184915dc385ceba4590d3</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMouFYP_oOANyH1zSbZJOBFil9Q8FLBW8gmWZuy3a1JKvTfW9ueBoaHGWYQuqUwpdCwBzEF2rC6hjNUUSEokQ1tzlEFoDmpOfu6RFc5rwBqLaWq0ONiGdLa9ti6En9tieOAxw77tMO5jz4O37hL0R18W3BZBjzYYSTZ2T5co4vO9jncnHSCPl-eF7M3Mv94fZ89zcmGMlaIksoL2ukAgfNWU6aBcxUkgJUehFetboMUUgLvqOKaCu-YEi60lgsNnk3Q3TF3k8afbcjFrMZtGvaVplYNZ4JJkHvq_khlF8thidmkuLZpZyiY_3eMMKd32B-Kr1TT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2864353707</pqid></control><display><type>conference_proceeding</type><title>Thermal activation of dry sliding friction at the nano-scale</title><source>AIP Journals Complete</source><creator>Kheiri, Rasoul ; Tsukanov, Alexey A.</creator><contributor>Kolubaev, Evgeny A.</contributor><creatorcontrib>Kheiri, Rasoul ; Tsukanov, Alexey A. ; Kolubaev, Evgeny A.</creatorcontrib><description>Molecular dynamic (MD) simulations are applied to investigate the dependency of the kinetic friction coefficient on the temperature at the nano-scale. The system is comprised of an aluminum spherical particle consisting of 32000 atoms in an FCC lattice sliding on a stack of several layers of graphene, and the simulations have done using LAMMPS. The interaction potential is charge-optimized many-body (COMB3) potential and a Langevin thermostat keep the system at a nearly constant temperature. With an assumption of linear viscous friction, Ffr = -γν, the kinetic friction coefficient γ is derived and plotted at different temperatures in the interval of T ∈ [1, 600] K. As a result, by increasing temperature, the kinetic friction coefficient is decreased. Consequently, while the friction is assumed as a linear viscous model, the results are similar to the thermal activation in atomic-scale friction. That is, (1) by increasing sliding velocity friction force will be increased and (2) by increasing temperature, kinetic friction coefficient decreases.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0163220</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Coefficient of friction ; Face centered cubic lattice ; Graphene ; Kinetic friction ; Molecular dynamics ; Sliding friction ; Temperature</subject><ispartof>AIP conference proceedings, 2023, Vol.2899 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0163220$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76353</link.rule.ids></links><search><contributor>Kolubaev, Evgeny A.</contributor><creatorcontrib>Kheiri, Rasoul</creatorcontrib><creatorcontrib>Tsukanov, Alexey A.</creatorcontrib><title>Thermal activation of dry sliding friction at the nano-scale</title><title>AIP conference proceedings</title><description>Molecular dynamic (MD) simulations are applied to investigate the dependency of the kinetic friction coefficient on the temperature at the nano-scale. The system is comprised of an aluminum spherical particle consisting of 32000 atoms in an FCC lattice sliding on a stack of several layers of graphene, and the simulations have done using LAMMPS. The interaction potential is charge-optimized many-body (COMB3) potential and a Langevin thermostat keep the system at a nearly constant temperature. With an assumption of linear viscous friction, Ffr = -γν, the kinetic friction coefficient γ is derived and plotted at different temperatures in the interval of T ∈ [1, 600] K. As a result, by increasing temperature, the kinetic friction coefficient is decreased. Consequently, while the friction is assumed as a linear viscous model, the results are similar to the thermal activation in atomic-scale friction. That is, (1) by increasing sliding velocity friction force will be increased and (2) by increasing temperature, kinetic friction coefficient decreases.</description><subject>Coefficient of friction</subject><subject>Face centered cubic lattice</subject><subject>Graphene</subject><subject>Kinetic friction</subject><subject>Molecular dynamics</subject><subject>Sliding friction</subject><subject>Temperature</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LAzEYhIMouFYP_oOANyH1zSbZJOBFil9Q8FLBW8gmWZuy3a1JKvTfW9ueBoaHGWYQuqUwpdCwBzEF2rC6hjNUUSEokQ1tzlEFoDmpOfu6RFc5rwBqLaWq0ONiGdLa9ti6En9tieOAxw77tMO5jz4O37hL0R18W3BZBjzYYSTZ2T5co4vO9jncnHSCPl-eF7M3Mv94fZ89zcmGMlaIksoL2ukAgfNWU6aBcxUkgJUehFetboMUUgLvqOKaCu-YEi60lgsNnk3Q3TF3k8afbcjFrMZtGvaVplYNZ4JJkHvq_khlF8thidmkuLZpZyiY_3eMMKd32B-Kr1TT</recordid><startdate>20230913</startdate><enddate>20230913</enddate><creator>Kheiri, Rasoul</creator><creator>Tsukanov, Alexey A.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230913</creationdate><title>Thermal activation of dry sliding friction at the nano-scale</title><author>Kheiri, Rasoul ; Tsukanov, Alexey A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-878d51f9e0e44b91390448e700a7d05d8b9be757704f184915dc385ceba4590d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coefficient of friction</topic><topic>Face centered cubic lattice</topic><topic>Graphene</topic><topic>Kinetic friction</topic><topic>Molecular dynamics</topic><topic>Sliding friction</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kheiri, Rasoul</creatorcontrib><creatorcontrib>Tsukanov, Alexey A.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kheiri, Rasoul</au><au>Tsukanov, Alexey A.</au><au>Kolubaev, Evgeny A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Thermal activation of dry sliding friction at the nano-scale</atitle><btitle>AIP conference proceedings</btitle><date>2023-09-13</date><risdate>2023</risdate><volume>2899</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Molecular dynamic (MD) simulations are applied to investigate the dependency of the kinetic friction coefficient on the temperature at the nano-scale. The system is comprised of an aluminum spherical particle consisting of 32000 atoms in an FCC lattice sliding on a stack of several layers of graphene, and the simulations have done using LAMMPS. The interaction potential is charge-optimized many-body (COMB3) potential and a Langevin thermostat keep the system at a nearly constant temperature. With an assumption of linear viscous friction, Ffr = -γν, the kinetic friction coefficient γ is derived and plotted at different temperatures in the interval of T ∈ [1, 600] K. As a result, by increasing temperature, the kinetic friction coefficient is decreased. Consequently, while the friction is assumed as a linear viscous model, the results are similar to the thermal activation in atomic-scale friction. That is, (1) by increasing sliding velocity friction force will be increased and (2) by increasing temperature, kinetic friction coefficient decreases.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0163220</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2899 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2864353707 |
source | AIP Journals Complete |
subjects | Coefficient of friction Face centered cubic lattice Graphene Kinetic friction Molecular dynamics Sliding friction Temperature |
title | Thermal activation of dry sliding friction at the nano-scale |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T01%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Thermal%20activation%20of%20dry%20sliding%20friction%20at%20the%20nano-scale&rft.btitle=AIP%20conference%20proceedings&rft.au=Kheiri,%20Rasoul&rft.date=2023-09-13&rft.volume=2899&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0163220&rft_dat=%3Cproquest_scita%3E2864353707%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864353707&rft_id=info:pmid/&rfr_iscdi=true |