Thermal activation of dry sliding friction at the nano-scale

Molecular dynamic (MD) simulations are applied to investigate the dependency of the kinetic friction coefficient on the temperature at the nano-scale. The system is comprised of an aluminum spherical particle consisting of 32000 atoms in an FCC lattice sliding on a stack of several layers of graphen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kheiri, Rasoul, Tsukanov, Alexey A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2899
creator Kheiri, Rasoul
Tsukanov, Alexey A.
description Molecular dynamic (MD) simulations are applied to investigate the dependency of the kinetic friction coefficient on the temperature at the nano-scale. The system is comprised of an aluminum spherical particle consisting of 32000 atoms in an FCC lattice sliding on a stack of several layers of graphene, and the simulations have done using LAMMPS. The interaction potential is charge-optimized many-body (COMB3) potential and a Langevin thermostat keep the system at a nearly constant temperature. With an assumption of linear viscous friction, Ffr = -γν, the kinetic friction coefficient γ is derived and plotted at different temperatures in the interval of T ∈ [1, 600] K. As a result, by increasing temperature, the kinetic friction coefficient is decreased. Consequently, while the friction is assumed as a linear viscous model, the results are similar to the thermal activation in atomic-scale friction. That is, (1) by increasing sliding velocity friction force will be increased and (2) by increasing temperature, kinetic friction coefficient decreases.
doi_str_mv 10.1063/5.0163220
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2864353707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864353707</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-878d51f9e0e44b91390448e700a7d05d8b9be757704f184915dc385ceba4590d3</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMouFYP_oOANyH1zSbZJOBFil9Q8FLBW8gmWZuy3a1JKvTfW9ueBoaHGWYQuqUwpdCwBzEF2rC6hjNUUSEokQ1tzlEFoDmpOfu6RFc5rwBqLaWq0ONiGdLa9ti6En9tieOAxw77tMO5jz4O37hL0R18W3BZBjzYYSTZ2T5co4vO9jncnHSCPl-eF7M3Mv94fZ89zcmGMlaIksoL2ukAgfNWU6aBcxUkgJUehFetboMUUgLvqOKaCu-YEi60lgsNnk3Q3TF3k8afbcjFrMZtGvaVplYNZ4JJkHvq_khlF8thidmkuLZpZyiY_3eMMKd32B-Kr1TT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2864353707</pqid></control><display><type>conference_proceeding</type><title>Thermal activation of dry sliding friction at the nano-scale</title><source>AIP Journals Complete</source><creator>Kheiri, Rasoul ; Tsukanov, Alexey A.</creator><contributor>Kolubaev, Evgeny A.</contributor><creatorcontrib>Kheiri, Rasoul ; Tsukanov, Alexey A. ; Kolubaev, Evgeny A.</creatorcontrib><description>Molecular dynamic (MD) simulations are applied to investigate the dependency of the kinetic friction coefficient on the temperature at the nano-scale. The system is comprised of an aluminum spherical particle consisting of 32000 atoms in an FCC lattice sliding on a stack of several layers of graphene, and the simulations have done using LAMMPS. The interaction potential is charge-optimized many-body (COMB3) potential and a Langevin thermostat keep the system at a nearly constant temperature. With an assumption of linear viscous friction, Ffr = -γν, the kinetic friction coefficient γ is derived and plotted at different temperatures in the interval of T ∈ [1, 600] K. As a result, by increasing temperature, the kinetic friction coefficient is decreased. Consequently, while the friction is assumed as a linear viscous model, the results are similar to the thermal activation in atomic-scale friction. That is, (1) by increasing sliding velocity friction force will be increased and (2) by increasing temperature, kinetic friction coefficient decreases.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0163220</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Coefficient of friction ; Face centered cubic lattice ; Graphene ; Kinetic friction ; Molecular dynamics ; Sliding friction ; Temperature</subject><ispartof>AIP conference proceedings, 2023, Vol.2899 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0163220$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76353</link.rule.ids></links><search><contributor>Kolubaev, Evgeny A.</contributor><creatorcontrib>Kheiri, Rasoul</creatorcontrib><creatorcontrib>Tsukanov, Alexey A.</creatorcontrib><title>Thermal activation of dry sliding friction at the nano-scale</title><title>AIP conference proceedings</title><description>Molecular dynamic (MD) simulations are applied to investigate the dependency of the kinetic friction coefficient on the temperature at the nano-scale. The system is comprised of an aluminum spherical particle consisting of 32000 atoms in an FCC lattice sliding on a stack of several layers of graphene, and the simulations have done using LAMMPS. The interaction potential is charge-optimized many-body (COMB3) potential and a Langevin thermostat keep the system at a nearly constant temperature. With an assumption of linear viscous friction, Ffr = -γν, the kinetic friction coefficient γ is derived and plotted at different temperatures in the interval of T ∈ [1, 600] K. As a result, by increasing temperature, the kinetic friction coefficient is decreased. Consequently, while the friction is assumed as a linear viscous model, the results are similar to the thermal activation in atomic-scale friction. That is, (1) by increasing sliding velocity friction force will be increased and (2) by increasing temperature, kinetic friction coefficient decreases.</description><subject>Coefficient of friction</subject><subject>Face centered cubic lattice</subject><subject>Graphene</subject><subject>Kinetic friction</subject><subject>Molecular dynamics</subject><subject>Sliding friction</subject><subject>Temperature</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LAzEYhIMouFYP_oOANyH1zSbZJOBFil9Q8FLBW8gmWZuy3a1JKvTfW9ueBoaHGWYQuqUwpdCwBzEF2rC6hjNUUSEokQ1tzlEFoDmpOfu6RFc5rwBqLaWq0ONiGdLa9ti6En9tieOAxw77tMO5jz4O37hL0R18W3BZBjzYYSTZ2T5co4vO9jncnHSCPl-eF7M3Mv94fZ89zcmGMlaIksoL2ukAgfNWU6aBcxUkgJUehFetboMUUgLvqOKaCu-YEi60lgsNnk3Q3TF3k8afbcjFrMZtGvaVplYNZ4JJkHvq_khlF8thidmkuLZpZyiY_3eMMKd32B-Kr1TT</recordid><startdate>20230913</startdate><enddate>20230913</enddate><creator>Kheiri, Rasoul</creator><creator>Tsukanov, Alexey A.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230913</creationdate><title>Thermal activation of dry sliding friction at the nano-scale</title><author>Kheiri, Rasoul ; Tsukanov, Alexey A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-878d51f9e0e44b91390448e700a7d05d8b9be757704f184915dc385ceba4590d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coefficient of friction</topic><topic>Face centered cubic lattice</topic><topic>Graphene</topic><topic>Kinetic friction</topic><topic>Molecular dynamics</topic><topic>Sliding friction</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kheiri, Rasoul</creatorcontrib><creatorcontrib>Tsukanov, Alexey A.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kheiri, Rasoul</au><au>Tsukanov, Alexey A.</au><au>Kolubaev, Evgeny A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Thermal activation of dry sliding friction at the nano-scale</atitle><btitle>AIP conference proceedings</btitle><date>2023-09-13</date><risdate>2023</risdate><volume>2899</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Molecular dynamic (MD) simulations are applied to investigate the dependency of the kinetic friction coefficient on the temperature at the nano-scale. The system is comprised of an aluminum spherical particle consisting of 32000 atoms in an FCC lattice sliding on a stack of several layers of graphene, and the simulations have done using LAMMPS. The interaction potential is charge-optimized many-body (COMB3) potential and a Langevin thermostat keep the system at a nearly constant temperature. With an assumption of linear viscous friction, Ffr = -γν, the kinetic friction coefficient γ is derived and plotted at different temperatures in the interval of T ∈ [1, 600] K. As a result, by increasing temperature, the kinetic friction coefficient is decreased. Consequently, while the friction is assumed as a linear viscous model, the results are similar to the thermal activation in atomic-scale friction. That is, (1) by increasing sliding velocity friction force will be increased and (2) by increasing temperature, kinetic friction coefficient decreases.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0163220</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2899 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2864353707
source AIP Journals Complete
subjects Coefficient of friction
Face centered cubic lattice
Graphene
Kinetic friction
Molecular dynamics
Sliding friction
Temperature
title Thermal activation of dry sliding friction at the nano-scale
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T01%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Thermal%20activation%20of%20dry%20sliding%20friction%20at%20the%20nano-scale&rft.btitle=AIP%20conference%20proceedings&rft.au=Kheiri,%20Rasoul&rft.date=2023-09-13&rft.volume=2899&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0163220&rft_dat=%3Cproquest_scita%3E2864353707%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864353707&rft_id=info:pmid/&rfr_iscdi=true