High Order QAM Modulation in Massive MIMO Systems with Asymmetrically Quantized 1-bit ADCs

Deploying 1-bit analog-to-digital converters (ADCs) in massive multiple-input multiple-output (MIMO) systems is promising to reduce the energy consumption. However, serious quantization errors limit the feasibility of high order quadrature amplitude modulation (QAM). This paper focuses on the perfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2023-09, Vol.22 (9), p.1-1
Hauptverfasser: Sun, Bule, Tang, Xiaogang, Zhou, Yiqing, Pan, Zhengang, Lin, Hai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 9
container_start_page 1
container_title IEEE transactions on wireless communications
container_volume 22
creator Sun, Bule
Tang, Xiaogang
Zhou, Yiqing
Pan, Zhengang
Lin, Hai
description Deploying 1-bit analog-to-digital converters (ADCs) in massive multiple-input multiple-output (MIMO) systems is promising to reduce the energy consumption. However, serious quantization errors limit the feasibility of high order quadrature amplitude modulation (QAM). This paper focuses on the performance analysis of 1-bit ADC massive MIMO systems with high order QAM. Firstly, we theoretically analyze the relationship between the quantization error and various quantization parameters. We reveal that there exists an overlapping of constellations at high signal to noise ratio (SNR) with symmetric quantization. This is because the amplitude information in the detected signal at high SNR is lost which is multiplied by the zero quantization threshold in the symmetric quantization. To overcome this problem, asymmetric quantization should be considered. Based on the analysis of the quantization error, we propose two approaches to recover the amplitude information. One is a near unbiased detection (NUD) by scaling the traditional linear detector and optimizing the quantization threshold. The other is a sub-array detection based on non-uniform quantization (SAD-NQ) to correct the deviation of the detection result by averaging over sub-arrays. Simulation results show that the proposed approaches can significantly improve the detection performance of high order QAM signal in the 1-bit ADC massive MIMO systems.
doi_str_mv 10.1109/TWC.2023.3243121
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2864344032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10043807</ieee_id><sourcerecordid>2864344032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-7736a66166b6f8ec65848629aa6e491ae901a05a82f5bf1750d88aa7ffcde3c63</originalsourceid><addsrcrecordid>eNpNkM1LwzAYxoMoOKd3Dx4Cnjvz3fRY6scGK2M4EbyErE1dRtfOJFXqX2_HdvD0Poff87zwA-AWownGKHlYvWcTggidUMIoJvgMjDDnMiKEyfNDpiLCJBaX4Mr7LUI4FpyPwMfUfm7gwpXGwWWaw7wtu1oH2zbQNjDX3ttvA_NZvoCvvQ9m5-GPDRuY-n63M8HZQtd1D5edboL9NSXE0doGmD5m_hpcVLr25uZ0x-Dt-WmVTaP54mWWpfOoIIyHKI6p0EJgIdaikqYQXDIpSKK1MCzB2iQIa8S1JBVfVzjmqJRS67iqitLQQtAxuD_u7l371Rkf1LbtXDO8VEQKRhlDlAwUOlKFa713plJ7Z3fa9QojdTCoBoPqYFCdDA6Vu2PFGmP-4YhRiWL6B9-Uaxs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864344032</pqid></control><display><type>article</type><title>High Order QAM Modulation in Massive MIMO Systems with Asymmetrically Quantized 1-bit ADCs</title><source>IEEE Electronic Library (IEL)</source><creator>Sun, Bule ; Tang, Xiaogang ; Zhou, Yiqing ; Pan, Zhengang ; Lin, Hai</creator><creatorcontrib>Sun, Bule ; Tang, Xiaogang ; Zhou, Yiqing ; Pan, Zhengang ; Lin, Hai</creatorcontrib><description>Deploying 1-bit analog-to-digital converters (ADCs) in massive multiple-input multiple-output (MIMO) systems is promising to reduce the energy consumption. However, serious quantization errors limit the feasibility of high order quadrature amplitude modulation (QAM). This paper focuses on the performance analysis of 1-bit ADC massive MIMO systems with high order QAM. Firstly, we theoretically analyze the relationship between the quantization error and various quantization parameters. We reveal that there exists an overlapping of constellations at high signal to noise ratio (SNR) with symmetric quantization. This is because the amplitude information in the detected signal at high SNR is lost which is multiplied by the zero quantization threshold in the symmetric quantization. To overcome this problem, asymmetric quantization should be considered. Based on the analysis of the quantization error, we propose two approaches to recover the amplitude information. One is a near unbiased detection (NUD) by scaling the traditional linear detector and optimizing the quantization threshold. The other is a sub-array detection based on non-uniform quantization (SAD-NQ) to correct the deviation of the detection result by averaging over sub-arrays. Simulation results show that the proposed approaches can significantly improve the detection performance of high order QAM signal in the 1-bit ADC massive MIMO systems.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2023.3243121</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>1-bit ADC ; Analog to digital converters ; Antennas ; Arrays ; Asymmetry ; Channel estimation ; Energy consumption ; Error analysis ; high order QAM modulation ; Massive MIMO ; Quadrature amplitude modulation ; Quantization (signal) ; Signal to noise ratio ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2023-09, Vol.22 (9), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-7736a66166b6f8ec65848629aa6e491ae901a05a82f5bf1750d88aa7ffcde3c63</cites><orcidid>0000-0002-3236-6547 ; 0000-0002-4553-5207 ; 0000-0002-3178-8270 ; 0000-0002-4713-0414</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10043807$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10043807$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, Bule</creatorcontrib><creatorcontrib>Tang, Xiaogang</creatorcontrib><creatorcontrib>Zhou, Yiqing</creatorcontrib><creatorcontrib>Pan, Zhengang</creatorcontrib><creatorcontrib>Lin, Hai</creatorcontrib><title>High Order QAM Modulation in Massive MIMO Systems with Asymmetrically Quantized 1-bit ADCs</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Deploying 1-bit analog-to-digital converters (ADCs) in massive multiple-input multiple-output (MIMO) systems is promising to reduce the energy consumption. However, serious quantization errors limit the feasibility of high order quadrature amplitude modulation (QAM). This paper focuses on the performance analysis of 1-bit ADC massive MIMO systems with high order QAM. Firstly, we theoretically analyze the relationship between the quantization error and various quantization parameters. We reveal that there exists an overlapping of constellations at high signal to noise ratio (SNR) with symmetric quantization. This is because the amplitude information in the detected signal at high SNR is lost which is multiplied by the zero quantization threshold in the symmetric quantization. To overcome this problem, asymmetric quantization should be considered. Based on the analysis of the quantization error, we propose two approaches to recover the amplitude information. One is a near unbiased detection (NUD) by scaling the traditional linear detector and optimizing the quantization threshold. The other is a sub-array detection based on non-uniform quantization (SAD-NQ) to correct the deviation of the detection result by averaging over sub-arrays. Simulation results show that the proposed approaches can significantly improve the detection performance of high order QAM signal in the 1-bit ADC massive MIMO systems.</description><subject>1-bit ADC</subject><subject>Analog to digital converters</subject><subject>Antennas</subject><subject>Arrays</subject><subject>Asymmetry</subject><subject>Channel estimation</subject><subject>Energy consumption</subject><subject>Error analysis</subject><subject>high order QAM modulation</subject><subject>Massive MIMO</subject><subject>Quadrature amplitude modulation</subject><subject>Quantization (signal)</subject><subject>Signal to noise ratio</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LwzAYxoMoOKd3Dx4Cnjvz3fRY6scGK2M4EbyErE1dRtfOJFXqX2_HdvD0Poff87zwA-AWownGKHlYvWcTggidUMIoJvgMjDDnMiKEyfNDpiLCJBaX4Mr7LUI4FpyPwMfUfm7gwpXGwWWaw7wtu1oH2zbQNjDX3ttvA_NZvoCvvQ9m5-GPDRuY-n63M8HZQtd1D5edboL9NSXE0doGmD5m_hpcVLr25uZ0x-Dt-WmVTaP54mWWpfOoIIyHKI6p0EJgIdaikqYQXDIpSKK1MCzB2iQIa8S1JBVfVzjmqJRS67iqitLQQtAxuD_u7l371Rkf1LbtXDO8VEQKRhlDlAwUOlKFa713plJ7Z3fa9QojdTCoBoPqYFCdDA6Vu2PFGmP-4YhRiWL6B9-Uaxs</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Sun, Bule</creator><creator>Tang, Xiaogang</creator><creator>Zhou, Yiqing</creator><creator>Pan, Zhengang</creator><creator>Lin, Hai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3236-6547</orcidid><orcidid>https://orcid.org/0000-0002-4553-5207</orcidid><orcidid>https://orcid.org/0000-0002-3178-8270</orcidid><orcidid>https://orcid.org/0000-0002-4713-0414</orcidid></search><sort><creationdate>20230901</creationdate><title>High Order QAM Modulation in Massive MIMO Systems with Asymmetrically Quantized 1-bit ADCs</title><author>Sun, Bule ; Tang, Xiaogang ; Zhou, Yiqing ; Pan, Zhengang ; Lin, Hai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-7736a66166b6f8ec65848629aa6e491ae901a05a82f5bf1750d88aa7ffcde3c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>1-bit ADC</topic><topic>Analog to digital converters</topic><topic>Antennas</topic><topic>Arrays</topic><topic>Asymmetry</topic><topic>Channel estimation</topic><topic>Energy consumption</topic><topic>Error analysis</topic><topic>high order QAM modulation</topic><topic>Massive MIMO</topic><topic>Quadrature amplitude modulation</topic><topic>Quantization (signal)</topic><topic>Signal to noise ratio</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Bule</creatorcontrib><creatorcontrib>Tang, Xiaogang</creatorcontrib><creatorcontrib>Zhou, Yiqing</creatorcontrib><creatorcontrib>Pan, Zhengang</creatorcontrib><creatorcontrib>Lin, Hai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Bule</au><au>Tang, Xiaogang</au><au>Zhou, Yiqing</au><au>Pan, Zhengang</au><au>Lin, Hai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Order QAM Modulation in Massive MIMO Systems with Asymmetrically Quantized 1-bit ADCs</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>22</volume><issue>9</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Deploying 1-bit analog-to-digital converters (ADCs) in massive multiple-input multiple-output (MIMO) systems is promising to reduce the energy consumption. However, serious quantization errors limit the feasibility of high order quadrature amplitude modulation (QAM). This paper focuses on the performance analysis of 1-bit ADC massive MIMO systems with high order QAM. Firstly, we theoretically analyze the relationship between the quantization error and various quantization parameters. We reveal that there exists an overlapping of constellations at high signal to noise ratio (SNR) with symmetric quantization. This is because the amplitude information in the detected signal at high SNR is lost which is multiplied by the zero quantization threshold in the symmetric quantization. To overcome this problem, asymmetric quantization should be considered. Based on the analysis of the quantization error, we propose two approaches to recover the amplitude information. One is a near unbiased detection (NUD) by scaling the traditional linear detector and optimizing the quantization threshold. The other is a sub-array detection based on non-uniform quantization (SAD-NQ) to correct the deviation of the detection result by averaging over sub-arrays. Simulation results show that the proposed approaches can significantly improve the detection performance of high order QAM signal in the 1-bit ADC massive MIMO systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2023.3243121</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3236-6547</orcidid><orcidid>https://orcid.org/0000-0002-4553-5207</orcidid><orcidid>https://orcid.org/0000-0002-3178-8270</orcidid><orcidid>https://orcid.org/0000-0002-4713-0414</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2023-09, Vol.22 (9), p.1-1
issn 1536-1276
1558-2248
language eng
recordid cdi_proquest_journals_2864344032
source IEEE Electronic Library (IEL)
subjects 1-bit ADC
Analog to digital converters
Antennas
Arrays
Asymmetry
Channel estimation
Energy consumption
Error analysis
high order QAM modulation
Massive MIMO
Quadrature amplitude modulation
Quantization (signal)
Signal to noise ratio
Wireless communication
title High Order QAM Modulation in Massive MIMO Systems with Asymmetrically Quantized 1-bit ADCs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T00%3A49%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Order%20QAM%20Modulation%20in%20Massive%20MIMO%20Systems%20with%20Asymmetrically%20Quantized%201-bit%20ADCs&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Sun,%20Bule&rft.date=2023-09-01&rft.volume=22&rft.issue=9&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2023.3243121&rft_dat=%3Cproquest_RIE%3E2864344032%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864344032&rft_id=info:pmid/&rft_ieee_id=10043807&rfr_iscdi=true