SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning
We present SeaEval, a benchmark for multilingual foundation models. In addition to characterizing how these models understand and reason with natural language, we also investigate how well they comprehend cultural practices, nuances, and values. Alongside standard accuracy metrics, we investigate th...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wang, Bin Liu, Zhengyuan Huang, Xin Jiao, Fangkai Ding, Yang Aw, AiTi Chen, Nancy F |
description | We present SeaEval, a benchmark for multilingual foundation models. In addition to characterizing how these models understand and reason with natural language, we also investigate how well they comprehend cultural practices, nuances, and values. Alongside standard accuracy metrics, we investigate the brittleness of foundation models in the dimensions of semantics and multilinguality. Our analyses span both open-sourced and closed models, leading to empirical results across classic NLP tasks, reasoning, and cultural comprehension. Key findings indicate (1) Most models exhibit varied behavior when given paraphrased instructions. (2) Many models still suffer from exposure bias (e.g., positional bias, majority label bias). (3) For questions rooted in factual, scientific, and commonsense knowledge, consistent responses are expected across multilingual queries that are semantically equivalent. Yet, most models surprisingly demonstrate inconsistent performance on these queries. (4) Multilingually-trained models have not attained "balanced multilingual" capabilities. Our endeavors underscore the need for more generalizable semantic representations and enhanced multilingual contextualization. SeaEval can serve as a launchpad for more thorough investigations and evaluations for multilingual and multicultural scenarios. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2864014548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864014548</sourcerecordid><originalsourceid>FETCH-proquest_journals_28640145483</originalsourceid><addsrcrecordid>eNqNi08LgjAchkcQJOV3GHQW5jZNuoUoHfJSnZOBUyZzv9qfPn87-AE6vfC8z7NBCWUszypO6Q6lzs2EEFqeaFGwBL0eUjRfofEIFndBe6WVmUIELQQzCK_A4A4Gqd0ZtxYWXFtwLrut1kWrySzSeOwB17EPNtK7FA5MVA5oOwrtZLruHh3b5llfs7eFT5DO9zMEa-LV06rkJOcFr9h_1g9EokQW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864014548</pqid></control><display><type>article</type><title>SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning</title><source>Free E- Journals</source><creator>Wang, Bin ; Liu, Zhengyuan ; Huang, Xin ; Jiao, Fangkai ; Ding, Yang ; Aw, AiTi ; Chen, Nancy F</creator><creatorcontrib>Wang, Bin ; Liu, Zhengyuan ; Huang, Xin ; Jiao, Fangkai ; Ding, Yang ; Aw, AiTi ; Chen, Nancy F</creatorcontrib><description>We present SeaEval, a benchmark for multilingual foundation models. In addition to characterizing how these models understand and reason with natural language, we also investigate how well they comprehend cultural practices, nuances, and values. Alongside standard accuracy metrics, we investigate the brittleness of foundation models in the dimensions of semantics and multilinguality. Our analyses span both open-sourced and closed models, leading to empirical results across classic NLP tasks, reasoning, and cultural comprehension. Key findings indicate (1) Most models exhibit varied behavior when given paraphrased instructions. (2) Many models still suffer from exposure bias (e.g., positional bias, majority label bias). (3) For questions rooted in factual, scientific, and commonsense knowledge, consistent responses are expected across multilingual queries that are semantically equivalent. Yet, most models surprisingly demonstrate inconsistent performance on these queries. (4) Multilingually-trained models have not attained "balanced multilingual" capabilities. Our endeavors underscore the need for more generalizable semantic representations and enhanced multilingual contextualization. SeaEval can serve as a launchpad for more thorough investigations and evaluations for multilingual and multicultural scenarios.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bias ; Cultural factors ; Empirical analysis ; Investigations ; Launching pads ; Multilingualism ; Natural language processing ; Queries ; Reasoning ; Semantics</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Liu, Zhengyuan</creatorcontrib><creatorcontrib>Huang, Xin</creatorcontrib><creatorcontrib>Jiao, Fangkai</creatorcontrib><creatorcontrib>Ding, Yang</creatorcontrib><creatorcontrib>Aw, AiTi</creatorcontrib><creatorcontrib>Chen, Nancy F</creatorcontrib><title>SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning</title><title>arXiv.org</title><description>We present SeaEval, a benchmark for multilingual foundation models. In addition to characterizing how these models understand and reason with natural language, we also investigate how well they comprehend cultural practices, nuances, and values. Alongside standard accuracy metrics, we investigate the brittleness of foundation models in the dimensions of semantics and multilinguality. Our analyses span both open-sourced and closed models, leading to empirical results across classic NLP tasks, reasoning, and cultural comprehension. Key findings indicate (1) Most models exhibit varied behavior when given paraphrased instructions. (2) Many models still suffer from exposure bias (e.g., positional bias, majority label bias). (3) For questions rooted in factual, scientific, and commonsense knowledge, consistent responses are expected across multilingual queries that are semantically equivalent. Yet, most models surprisingly demonstrate inconsistent performance on these queries. (4) Multilingually-trained models have not attained "balanced multilingual" capabilities. Our endeavors underscore the need for more generalizable semantic representations and enhanced multilingual contextualization. SeaEval can serve as a launchpad for more thorough investigations and evaluations for multilingual and multicultural scenarios.</description><subject>Bias</subject><subject>Cultural factors</subject><subject>Empirical analysis</subject><subject>Investigations</subject><subject>Launching pads</subject><subject>Multilingualism</subject><subject>Natural language processing</subject><subject>Queries</subject><subject>Reasoning</subject><subject>Semantics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi08LgjAchkcQJOV3GHQW5jZNuoUoHfJSnZOBUyZzv9qfPn87-AE6vfC8z7NBCWUszypO6Q6lzs2EEFqeaFGwBL0eUjRfofEIFndBe6WVmUIELQQzCK_A4A4Gqd0ZtxYWXFtwLrut1kWrySzSeOwB17EPNtK7FA5MVA5oOwrtZLruHh3b5llfs7eFT5DO9zMEa-LV06rkJOcFr9h_1g9EokQW</recordid><startdate>20240711</startdate><enddate>20240711</enddate><creator>Wang, Bin</creator><creator>Liu, Zhengyuan</creator><creator>Huang, Xin</creator><creator>Jiao, Fangkai</creator><creator>Ding, Yang</creator><creator>Aw, AiTi</creator><creator>Chen, Nancy F</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240711</creationdate><title>SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning</title><author>Wang, Bin ; Liu, Zhengyuan ; Huang, Xin ; Jiao, Fangkai ; Ding, Yang ; Aw, AiTi ; Chen, Nancy F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28640145483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bias</topic><topic>Cultural factors</topic><topic>Empirical analysis</topic><topic>Investigations</topic><topic>Launching pads</topic><topic>Multilingualism</topic><topic>Natural language processing</topic><topic>Queries</topic><topic>Reasoning</topic><topic>Semantics</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Liu, Zhengyuan</creatorcontrib><creatorcontrib>Huang, Xin</creatorcontrib><creatorcontrib>Jiao, Fangkai</creatorcontrib><creatorcontrib>Ding, Yang</creatorcontrib><creatorcontrib>Aw, AiTi</creatorcontrib><creatorcontrib>Chen, Nancy F</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Bin</au><au>Liu, Zhengyuan</au><au>Huang, Xin</au><au>Jiao, Fangkai</au><au>Ding, Yang</au><au>Aw, AiTi</au><au>Chen, Nancy F</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning</atitle><jtitle>arXiv.org</jtitle><date>2024-07-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present SeaEval, a benchmark for multilingual foundation models. In addition to characterizing how these models understand and reason with natural language, we also investigate how well they comprehend cultural practices, nuances, and values. Alongside standard accuracy metrics, we investigate the brittleness of foundation models in the dimensions of semantics and multilinguality. Our analyses span both open-sourced and closed models, leading to empirical results across classic NLP tasks, reasoning, and cultural comprehension. Key findings indicate (1) Most models exhibit varied behavior when given paraphrased instructions. (2) Many models still suffer from exposure bias (e.g., positional bias, majority label bias). (3) For questions rooted in factual, scientific, and commonsense knowledge, consistent responses are expected across multilingual queries that are semantically equivalent. Yet, most models surprisingly demonstrate inconsistent performance on these queries. (4) Multilingually-trained models have not attained "balanced multilingual" capabilities. Our endeavors underscore the need for more generalizable semantic representations and enhanced multilingual contextualization. SeaEval can serve as a launchpad for more thorough investigations and evaluations for multilingual and multicultural scenarios.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2864014548 |
source | Free E- Journals |
subjects | Bias Cultural factors Empirical analysis Investigations Launching pads Multilingualism Natural language processing Queries Reasoning Semantics |
title | SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A32%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=SeaEval%20for%20Multilingual%20Foundation%20Models:%20From%20Cross-Lingual%20Alignment%20to%20Cultural%20Reasoning&rft.jtitle=arXiv.org&rft.au=Wang,%20Bin&rft.date=2024-07-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2864014548%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864014548&rft_id=info:pmid/&rfr_iscdi=true |