SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning

We present SeaEval, a benchmark for multilingual foundation models. In addition to characterizing how these models understand and reason with natural language, we also investigate how well they comprehend cultural practices, nuances, and values. Alongside standard accuracy metrics, we investigate th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Wang, Bin, Liu, Zhengyuan, Huang, Xin, Jiao, Fangkai, Ding, Yang, Aw, AiTi, Chen, Nancy F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wang, Bin
Liu, Zhengyuan
Huang, Xin
Jiao, Fangkai
Ding, Yang
Aw, AiTi
Chen, Nancy F
description We present SeaEval, a benchmark for multilingual foundation models. In addition to characterizing how these models understand and reason with natural language, we also investigate how well they comprehend cultural practices, nuances, and values. Alongside standard accuracy metrics, we investigate the brittleness of foundation models in the dimensions of semantics and multilinguality. Our analyses span both open-sourced and closed models, leading to empirical results across classic NLP tasks, reasoning, and cultural comprehension. Key findings indicate (1) Most models exhibit varied behavior when given paraphrased instructions. (2) Many models still suffer from exposure bias (e.g., positional bias, majority label bias). (3) For questions rooted in factual, scientific, and commonsense knowledge, consistent responses are expected across multilingual queries that are semantically equivalent. Yet, most models surprisingly demonstrate inconsistent performance on these queries. (4) Multilingually-trained models have not attained "balanced multilingual" capabilities. Our endeavors underscore the need for more generalizable semantic representations and enhanced multilingual contextualization. SeaEval can serve as a launchpad for more thorough investigations and evaluations for multilingual and multicultural scenarios.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2864014548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864014548</sourcerecordid><originalsourceid>FETCH-proquest_journals_28640145483</originalsourceid><addsrcrecordid>eNqNi08LgjAchkcQJOV3GHQW5jZNuoUoHfJSnZOBUyZzv9qfPn87-AE6vfC8z7NBCWUszypO6Q6lzs2EEFqeaFGwBL0eUjRfofEIFndBe6WVmUIELQQzCK_A4A4Gqd0ZtxYWXFtwLrut1kWrySzSeOwB17EPNtK7FA5MVA5oOwrtZLruHh3b5llfs7eFT5DO9zMEa-LV06rkJOcFr9h_1g9EokQW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864014548</pqid></control><display><type>article</type><title>SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning</title><source>Free E- Journals</source><creator>Wang, Bin ; Liu, Zhengyuan ; Huang, Xin ; Jiao, Fangkai ; Ding, Yang ; Aw, AiTi ; Chen, Nancy F</creator><creatorcontrib>Wang, Bin ; Liu, Zhengyuan ; Huang, Xin ; Jiao, Fangkai ; Ding, Yang ; Aw, AiTi ; Chen, Nancy F</creatorcontrib><description>We present SeaEval, a benchmark for multilingual foundation models. In addition to characterizing how these models understand and reason with natural language, we also investigate how well they comprehend cultural practices, nuances, and values. Alongside standard accuracy metrics, we investigate the brittleness of foundation models in the dimensions of semantics and multilinguality. Our analyses span both open-sourced and closed models, leading to empirical results across classic NLP tasks, reasoning, and cultural comprehension. Key findings indicate (1) Most models exhibit varied behavior when given paraphrased instructions. (2) Many models still suffer from exposure bias (e.g., positional bias, majority label bias). (3) For questions rooted in factual, scientific, and commonsense knowledge, consistent responses are expected across multilingual queries that are semantically equivalent. Yet, most models surprisingly demonstrate inconsistent performance on these queries. (4) Multilingually-trained models have not attained "balanced multilingual" capabilities. Our endeavors underscore the need for more generalizable semantic representations and enhanced multilingual contextualization. SeaEval can serve as a launchpad for more thorough investigations and evaluations for multilingual and multicultural scenarios.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bias ; Cultural factors ; Empirical analysis ; Investigations ; Launching pads ; Multilingualism ; Natural language processing ; Queries ; Reasoning ; Semantics</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Liu, Zhengyuan</creatorcontrib><creatorcontrib>Huang, Xin</creatorcontrib><creatorcontrib>Jiao, Fangkai</creatorcontrib><creatorcontrib>Ding, Yang</creatorcontrib><creatorcontrib>Aw, AiTi</creatorcontrib><creatorcontrib>Chen, Nancy F</creatorcontrib><title>SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning</title><title>arXiv.org</title><description>We present SeaEval, a benchmark for multilingual foundation models. In addition to characterizing how these models understand and reason with natural language, we also investigate how well they comprehend cultural practices, nuances, and values. Alongside standard accuracy metrics, we investigate the brittleness of foundation models in the dimensions of semantics and multilinguality. Our analyses span both open-sourced and closed models, leading to empirical results across classic NLP tasks, reasoning, and cultural comprehension. Key findings indicate (1) Most models exhibit varied behavior when given paraphrased instructions. (2) Many models still suffer from exposure bias (e.g., positional bias, majority label bias). (3) For questions rooted in factual, scientific, and commonsense knowledge, consistent responses are expected across multilingual queries that are semantically equivalent. Yet, most models surprisingly demonstrate inconsistent performance on these queries. (4) Multilingually-trained models have not attained "balanced multilingual" capabilities. Our endeavors underscore the need for more generalizable semantic representations and enhanced multilingual contextualization. SeaEval can serve as a launchpad for more thorough investigations and evaluations for multilingual and multicultural scenarios.</description><subject>Bias</subject><subject>Cultural factors</subject><subject>Empirical analysis</subject><subject>Investigations</subject><subject>Launching pads</subject><subject>Multilingualism</subject><subject>Natural language processing</subject><subject>Queries</subject><subject>Reasoning</subject><subject>Semantics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi08LgjAchkcQJOV3GHQW5jZNuoUoHfJSnZOBUyZzv9qfPn87-AE6vfC8z7NBCWUszypO6Q6lzs2EEFqeaFGwBL0eUjRfofEIFndBe6WVmUIELQQzCK_A4A4Gqd0ZtxYWXFtwLrut1kWrySzSeOwB17EPNtK7FA5MVA5oOwrtZLruHh3b5llfs7eFT5DO9zMEa-LV06rkJOcFr9h_1g9EokQW</recordid><startdate>20240711</startdate><enddate>20240711</enddate><creator>Wang, Bin</creator><creator>Liu, Zhengyuan</creator><creator>Huang, Xin</creator><creator>Jiao, Fangkai</creator><creator>Ding, Yang</creator><creator>Aw, AiTi</creator><creator>Chen, Nancy F</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240711</creationdate><title>SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning</title><author>Wang, Bin ; Liu, Zhengyuan ; Huang, Xin ; Jiao, Fangkai ; Ding, Yang ; Aw, AiTi ; Chen, Nancy F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28640145483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bias</topic><topic>Cultural factors</topic><topic>Empirical analysis</topic><topic>Investigations</topic><topic>Launching pads</topic><topic>Multilingualism</topic><topic>Natural language processing</topic><topic>Queries</topic><topic>Reasoning</topic><topic>Semantics</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Liu, Zhengyuan</creatorcontrib><creatorcontrib>Huang, Xin</creatorcontrib><creatorcontrib>Jiao, Fangkai</creatorcontrib><creatorcontrib>Ding, Yang</creatorcontrib><creatorcontrib>Aw, AiTi</creatorcontrib><creatorcontrib>Chen, Nancy F</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Bin</au><au>Liu, Zhengyuan</au><au>Huang, Xin</au><au>Jiao, Fangkai</au><au>Ding, Yang</au><au>Aw, AiTi</au><au>Chen, Nancy F</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning</atitle><jtitle>arXiv.org</jtitle><date>2024-07-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present SeaEval, a benchmark for multilingual foundation models. In addition to characterizing how these models understand and reason with natural language, we also investigate how well they comprehend cultural practices, nuances, and values. Alongside standard accuracy metrics, we investigate the brittleness of foundation models in the dimensions of semantics and multilinguality. Our analyses span both open-sourced and closed models, leading to empirical results across classic NLP tasks, reasoning, and cultural comprehension. Key findings indicate (1) Most models exhibit varied behavior when given paraphrased instructions. (2) Many models still suffer from exposure bias (e.g., positional bias, majority label bias). (3) For questions rooted in factual, scientific, and commonsense knowledge, consistent responses are expected across multilingual queries that are semantically equivalent. Yet, most models surprisingly demonstrate inconsistent performance on these queries. (4) Multilingually-trained models have not attained "balanced multilingual" capabilities. Our endeavors underscore the need for more generalizable semantic representations and enhanced multilingual contextualization. SeaEval can serve as a launchpad for more thorough investigations and evaluations for multilingual and multicultural scenarios.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2864014548
source Free E- Journals
subjects Bias
Cultural factors
Empirical analysis
Investigations
Launching pads
Multilingualism
Natural language processing
Queries
Reasoning
Semantics
title SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A32%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=SeaEval%20for%20Multilingual%20Foundation%20Models:%20From%20Cross-Lingual%20Alignment%20to%20Cultural%20Reasoning&rft.jtitle=arXiv.org&rft.au=Wang,%20Bin&rft.date=2024-07-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2864014548%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864014548&rft_id=info:pmid/&rfr_iscdi=true