Towards Trustworthy Artificial Intelligence for Equitable Global Health

Artificial intelligence (AI) can potentially transform global health, but algorithmic bias can exacerbate social inequities and disparity. Trustworthy AI entails the intentional design to ensure equity and mitigate potential biases. To advance trustworthy AI in global health, we convened a workshop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-09
Hauptverfasser: Qin, Hong, Kong, Jude, Ding, Wandi, Ahluwalia, Ramneek, Christo El Morr, Engin, Zeynep, Effoduh, Jake Okechukwu, Hwa, Rebecca, Guo, Serena Jingchuan, Seyyed-Kalantari, Laleh, Muyingo, Sylvia Kiwuwa, Moore, Candace Makeda, Parikh, Ravi, Schwartz, Reva, Zhu, Dongxiao, Wang, Xiaoqian, Zhang, Yiye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Qin, Hong
Kong, Jude
Ding, Wandi
Ahluwalia, Ramneek
Christo El Morr
Engin, Zeynep
Effoduh, Jake Okechukwu
Hwa, Rebecca
Guo, Serena Jingchuan
Seyyed-Kalantari, Laleh
Muyingo, Sylvia Kiwuwa
Moore, Candace Makeda
Parikh, Ravi
Schwartz, Reva
Zhu, Dongxiao
Wang, Xiaoqian
Zhang, Yiye
description Artificial intelligence (AI) can potentially transform global health, but algorithmic bias can exacerbate social inequities and disparity. Trustworthy AI entails the intentional design to ensure equity and mitigate potential biases. To advance trustworthy AI in global health, we convened a workshop on Fairness in Machine Intelligence for Global Health (FairMI4GH). The event brought together a global mix of experts from various disciplines, community health practitioners, policymakers, and more. Topics covered included managing AI bias in socio-technical systems, AI's potential impacts on global health, and balancing data privacy with transparency. Panel discussions examined the cultural, political, and ethical dimensions of AI in global health. FairMI4GH aimed to stimulate dialogue, facilitate knowledge transfer, and spark innovative solutions. Drawing from NIST's AI Risk Management Framework, it provided suggestions for handling AI risks and biases. The need to mitigate data biases from the research design stage, adopt a human-centered approach, and advocate for AI transparency was recognized. Challenges such as updating legal frameworks, managing cross-border data sharing, and motivating developers to reduce bias were acknowledged. The event emphasized the necessity of diverse viewpoints and multi-dimensional dialogue for creating a fair and ethical AI framework for equitable global health.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2864014493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864014493</sourcerecordid><originalsourceid>FETCH-proquest_journals_28640144933</originalsourceid><addsrcrecordid>eNqNykELgjAYgOERBEn5HwadhblNs2OEWXfvMm3mZLj89g3p3-ehH9DpPbzPhkRciDQpJOc7Ens_MsZ4fuJZJiJS1W5R8PS0huBxcYDDh14ATW86oyx9TKitNS89dZr2Dmg5B4OqtZpW1rWruGtlcTiQba-s1_Gve3K8lfX1nrzBzUF7bEYXYFpXw4tcslTKsxD_qS9FSDwG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864014493</pqid></control><display><type>article</type><title>Towards Trustworthy Artificial Intelligence for Equitable Global Health</title><source>Free E- Journals</source><creator>Qin, Hong ; Kong, Jude ; Ding, Wandi ; Ahluwalia, Ramneek ; Christo El Morr ; Engin, Zeynep ; Effoduh, Jake Okechukwu ; Hwa, Rebecca ; Guo, Serena Jingchuan ; Seyyed-Kalantari, Laleh ; Muyingo, Sylvia Kiwuwa ; Moore, Candace Makeda ; Parikh, Ravi ; Schwartz, Reva ; Zhu, Dongxiao ; Wang, Xiaoqian ; Zhang, Yiye</creator><creatorcontrib>Qin, Hong ; Kong, Jude ; Ding, Wandi ; Ahluwalia, Ramneek ; Christo El Morr ; Engin, Zeynep ; Effoduh, Jake Okechukwu ; Hwa, Rebecca ; Guo, Serena Jingchuan ; Seyyed-Kalantari, Laleh ; Muyingo, Sylvia Kiwuwa ; Moore, Candace Makeda ; Parikh, Ravi ; Schwartz, Reva ; Zhu, Dongxiao ; Wang, Xiaoqian ; Zhang, Yiye</creatorcontrib><description>Artificial intelligence (AI) can potentially transform global health, but algorithmic bias can exacerbate social inequities and disparity. Trustworthy AI entails the intentional design to ensure equity and mitigate potential biases. To advance trustworthy AI in global health, we convened a workshop on Fairness in Machine Intelligence for Global Health (FairMI4GH). The event brought together a global mix of experts from various disciplines, community health practitioners, policymakers, and more. Topics covered included managing AI bias in socio-technical systems, AI's potential impacts on global health, and balancing data privacy with transparency. Panel discussions examined the cultural, political, and ethical dimensions of AI in global health. FairMI4GH aimed to stimulate dialogue, facilitate knowledge transfer, and spark innovative solutions. Drawing from NIST's AI Risk Management Framework, it provided suggestions for handling AI risks and biases. The need to mitigate data biases from the research design stage, adopt a human-centered approach, and advocate for AI transparency was recognized. Challenges such as updating legal frameworks, managing cross-border data sharing, and motivating developers to reduce bias were acknowledged. The event emphasized the necessity of diverse viewpoints and multi-dimensional dialogue for creating a fair and ethical AI framework for equitable global health.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial intelligence ; Bias ; Data transparency ; Ethics ; Knowledge management ; Public health ; Risk management ; Trustworthiness</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Qin, Hong</creatorcontrib><creatorcontrib>Kong, Jude</creatorcontrib><creatorcontrib>Ding, Wandi</creatorcontrib><creatorcontrib>Ahluwalia, Ramneek</creatorcontrib><creatorcontrib>Christo El Morr</creatorcontrib><creatorcontrib>Engin, Zeynep</creatorcontrib><creatorcontrib>Effoduh, Jake Okechukwu</creatorcontrib><creatorcontrib>Hwa, Rebecca</creatorcontrib><creatorcontrib>Guo, Serena Jingchuan</creatorcontrib><creatorcontrib>Seyyed-Kalantari, Laleh</creatorcontrib><creatorcontrib>Muyingo, Sylvia Kiwuwa</creatorcontrib><creatorcontrib>Moore, Candace Makeda</creatorcontrib><creatorcontrib>Parikh, Ravi</creatorcontrib><creatorcontrib>Schwartz, Reva</creatorcontrib><creatorcontrib>Zhu, Dongxiao</creatorcontrib><creatorcontrib>Wang, Xiaoqian</creatorcontrib><creatorcontrib>Zhang, Yiye</creatorcontrib><title>Towards Trustworthy Artificial Intelligence for Equitable Global Health</title><title>arXiv.org</title><description>Artificial intelligence (AI) can potentially transform global health, but algorithmic bias can exacerbate social inequities and disparity. Trustworthy AI entails the intentional design to ensure equity and mitigate potential biases. To advance trustworthy AI in global health, we convened a workshop on Fairness in Machine Intelligence for Global Health (FairMI4GH). The event brought together a global mix of experts from various disciplines, community health practitioners, policymakers, and more. Topics covered included managing AI bias in socio-technical systems, AI's potential impacts on global health, and balancing data privacy with transparency. Panel discussions examined the cultural, political, and ethical dimensions of AI in global health. FairMI4GH aimed to stimulate dialogue, facilitate knowledge transfer, and spark innovative solutions. Drawing from NIST's AI Risk Management Framework, it provided suggestions for handling AI risks and biases. The need to mitigate data biases from the research design stage, adopt a human-centered approach, and advocate for AI transparency was recognized. Challenges such as updating legal frameworks, managing cross-border data sharing, and motivating developers to reduce bias were acknowledged. The event emphasized the necessity of diverse viewpoints and multi-dimensional dialogue for creating a fair and ethical AI framework for equitable global health.</description><subject>Artificial intelligence</subject><subject>Bias</subject><subject>Data transparency</subject><subject>Ethics</subject><subject>Knowledge management</subject><subject>Public health</subject><subject>Risk management</subject><subject>Trustworthiness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNykELgjAYgOERBEn5HwadhblNs2OEWXfvMm3mZLj89g3p3-ehH9DpPbzPhkRciDQpJOc7Ens_MsZ4fuJZJiJS1W5R8PS0huBxcYDDh14ATW86oyx9TKitNS89dZr2Dmg5B4OqtZpW1rWruGtlcTiQba-s1_Gve3K8lfX1nrzBzUF7bEYXYFpXw4tcslTKsxD_qS9FSDwG</recordid><startdate>20230910</startdate><enddate>20230910</enddate><creator>Qin, Hong</creator><creator>Kong, Jude</creator><creator>Ding, Wandi</creator><creator>Ahluwalia, Ramneek</creator><creator>Christo El Morr</creator><creator>Engin, Zeynep</creator><creator>Effoduh, Jake Okechukwu</creator><creator>Hwa, Rebecca</creator><creator>Guo, Serena Jingchuan</creator><creator>Seyyed-Kalantari, Laleh</creator><creator>Muyingo, Sylvia Kiwuwa</creator><creator>Moore, Candace Makeda</creator><creator>Parikh, Ravi</creator><creator>Schwartz, Reva</creator><creator>Zhu, Dongxiao</creator><creator>Wang, Xiaoqian</creator><creator>Zhang, Yiye</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230910</creationdate><title>Towards Trustworthy Artificial Intelligence for Equitable Global Health</title><author>Qin, Hong ; Kong, Jude ; Ding, Wandi ; Ahluwalia, Ramneek ; Christo El Morr ; Engin, Zeynep ; Effoduh, Jake Okechukwu ; Hwa, Rebecca ; Guo, Serena Jingchuan ; Seyyed-Kalantari, Laleh ; Muyingo, Sylvia Kiwuwa ; Moore, Candace Makeda ; Parikh, Ravi ; Schwartz, Reva ; Zhu, Dongxiao ; Wang, Xiaoqian ; Zhang, Yiye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28640144933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Bias</topic><topic>Data transparency</topic><topic>Ethics</topic><topic>Knowledge management</topic><topic>Public health</topic><topic>Risk management</topic><topic>Trustworthiness</topic><toplevel>online_resources</toplevel><creatorcontrib>Qin, Hong</creatorcontrib><creatorcontrib>Kong, Jude</creatorcontrib><creatorcontrib>Ding, Wandi</creatorcontrib><creatorcontrib>Ahluwalia, Ramneek</creatorcontrib><creatorcontrib>Christo El Morr</creatorcontrib><creatorcontrib>Engin, Zeynep</creatorcontrib><creatorcontrib>Effoduh, Jake Okechukwu</creatorcontrib><creatorcontrib>Hwa, Rebecca</creatorcontrib><creatorcontrib>Guo, Serena Jingchuan</creatorcontrib><creatorcontrib>Seyyed-Kalantari, Laleh</creatorcontrib><creatorcontrib>Muyingo, Sylvia Kiwuwa</creatorcontrib><creatorcontrib>Moore, Candace Makeda</creatorcontrib><creatorcontrib>Parikh, Ravi</creatorcontrib><creatorcontrib>Schwartz, Reva</creatorcontrib><creatorcontrib>Zhu, Dongxiao</creatorcontrib><creatorcontrib>Wang, Xiaoqian</creatorcontrib><creatorcontrib>Zhang, Yiye</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Hong</au><au>Kong, Jude</au><au>Ding, Wandi</au><au>Ahluwalia, Ramneek</au><au>Christo El Morr</au><au>Engin, Zeynep</au><au>Effoduh, Jake Okechukwu</au><au>Hwa, Rebecca</au><au>Guo, Serena Jingchuan</au><au>Seyyed-Kalantari, Laleh</au><au>Muyingo, Sylvia Kiwuwa</au><au>Moore, Candace Makeda</au><au>Parikh, Ravi</au><au>Schwartz, Reva</au><au>Zhu, Dongxiao</au><au>Wang, Xiaoqian</au><au>Zhang, Yiye</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Towards Trustworthy Artificial Intelligence for Equitable Global Health</atitle><jtitle>arXiv.org</jtitle><date>2023-09-10</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Artificial intelligence (AI) can potentially transform global health, but algorithmic bias can exacerbate social inequities and disparity. Trustworthy AI entails the intentional design to ensure equity and mitigate potential biases. To advance trustworthy AI in global health, we convened a workshop on Fairness in Machine Intelligence for Global Health (FairMI4GH). The event brought together a global mix of experts from various disciplines, community health practitioners, policymakers, and more. Topics covered included managing AI bias in socio-technical systems, AI's potential impacts on global health, and balancing data privacy with transparency. Panel discussions examined the cultural, political, and ethical dimensions of AI in global health. FairMI4GH aimed to stimulate dialogue, facilitate knowledge transfer, and spark innovative solutions. Drawing from NIST's AI Risk Management Framework, it provided suggestions for handling AI risks and biases. The need to mitigate data biases from the research design stage, adopt a human-centered approach, and advocate for AI transparency was recognized. Challenges such as updating legal frameworks, managing cross-border data sharing, and motivating developers to reduce bias were acknowledged. The event emphasized the necessity of diverse viewpoints and multi-dimensional dialogue for creating a fair and ethical AI framework for equitable global health.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2864014493
source Free E- Journals
subjects Artificial intelligence
Bias
Data transparency
Ethics
Knowledge management
Public health
Risk management
Trustworthiness
title Towards Trustworthy Artificial Intelligence for Equitable Global Health
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A21%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Towards%20Trustworthy%20Artificial%20Intelligence%20for%20Equitable%20Global%20Health&rft.jtitle=arXiv.org&rft.au=Qin,%20Hong&rft.date=2023-09-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2864014493%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864014493&rft_id=info:pmid/&rfr_iscdi=true