A natural language querying interface for process mining

In spite of recent advances in process mining, making this new technology accessible to non-technical users remains a challenge. Process maps and dashboards still seem to frighten many line of business professionals. In order to democratize this technology, we propose a natural language querying int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent information systems 2023-08, Vol.61 (1), p.113-142
Hauptverfasser: Barbieri, Luciana, Madeira, Edmundo, Stroeh, Kleber, van der Aalst, Wil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 142
container_issue 1
container_start_page 113
container_title Journal of intelligent information systems
container_volume 61
creator Barbieri, Luciana
Madeira, Edmundo
Stroeh, Kleber
van der Aalst, Wil
description In spite of recent advances in process mining, making this new technology accessible to non-technical users remains a challenge. Process maps and dashboards still seem to frighten many line of business professionals. In order to democratize this technology, we propose a natural language querying interface that allows non-technical users to retrieve relevant information and insights about their processes by simply asking questions in plain English. In this work we propose a reference architecture to support questions in natural language and provide the right answers by integrating to existing process mining tools. We combine classic natural language processing techniques (such as entity recognition and semantic parsing) with an abstract logical representation for process mining queries. We also provide a compilation of real natural language questions and an implementation of the architecture that interfaces to an existing commercial tool: Everflow. We also introduce a taxonomy for process mining related questions, and use that as a background grid to analyze the performance of this experiment. Finally, we point to potential future work opportunities in this field.
doi_str_mv 10.1007/s10844-022-00759-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2864007858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864007858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4991893c5b2325c129cb316874ae5018bab710cc99a8ee542feb84e9f55ff7393</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAczR_N5ljKWqFghc9h2xIli1ttia7h357U1fw5mkY5r03Mz-E7hl9ZJTqp8KokZJQzkltFRC4QAumtCC60eoSLShwRQAov0Y3pewopWAaukBmhZMbp-z2eO9SN7ku4K8p5FOfOtynMeTofMBxyPiYBx9KwYc-1eEtuopuX8Ldb12iz5fnj_WGbN9f39arLfGCwUgkADMgvGq54MozDr4VrDFauqAoM61rNaPeAzgTgpI8htbIAFGpGLUAsUQPc25dXw8ro90NU051peWmkfVbo0xV8Vnl81BKDtEec39w-WQZtWdCdiZkKyH7Q8ieo8VsKlWcupD_ov9xfQPLr2gE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864007858</pqid></control><display><type>article</type><title>A natural language querying interface for process mining</title><source>SpringerLink Journals - AutoHoldings</source><creator>Barbieri, Luciana ; Madeira, Edmundo ; Stroeh, Kleber ; van der Aalst, Wil</creator><creatorcontrib>Barbieri, Luciana ; Madeira, Edmundo ; Stroeh, Kleber ; van der Aalst, Wil</creatorcontrib><description>In spite of recent advances in process mining, making this new technology accessible to non-technical users remains a challenge. Process maps and dashboards still seem to frighten many line of business professionals. In order to democratize this technology, we propose a natural language querying interface that allows non-technical users to retrieve relevant information and insights about their processes by simply asking questions in plain English. In this work we propose a reference architecture to support questions in natural language and provide the right answers by integrating to existing process mining tools. We combine classic natural language processing techniques (such as entity recognition and semantic parsing) with an abstract logical representation for process mining queries. We also provide a compilation of real natural language questions and an implementation of the architecture that interfaces to an existing commercial tool: Everflow. We also introduce a taxonomy for process mining related questions, and use that as a background grid to analyze the performance of this experiment. Finally, we point to potential future work opportunities in this field.</description><identifier>ISSN: 0925-9902</identifier><identifier>EISSN: 1573-7675</identifier><identifier>DOI: 10.1007/s10844-022-00759-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Computer Science ; Data Structures and Information Theory ; Information retrieval ; Information Storage and Retrieval ; IT in Business ; Language ; Natural language ; Natural language processing ; Natural Language Processing (NLP) ; New technology ; Process mapping ; Query processing ; Questions ; Taxonomy</subject><ispartof>Journal of intelligent information systems, 2023-08, Vol.61 (1), p.113-142</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4991893c5b2325c129cb316874ae5018bab710cc99a8ee542feb84e9f55ff7393</citedby><cites>FETCH-LOGICAL-c319t-4991893c5b2325c129cb316874ae5018bab710cc99a8ee542feb84e9f55ff7393</cites><orcidid>0000-0002-5295-2228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10844-022-00759-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10844-022-00759-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Barbieri, Luciana</creatorcontrib><creatorcontrib>Madeira, Edmundo</creatorcontrib><creatorcontrib>Stroeh, Kleber</creatorcontrib><creatorcontrib>van der Aalst, Wil</creatorcontrib><title>A natural language querying interface for process mining</title><title>Journal of intelligent information systems</title><addtitle>J Intell Inf Syst</addtitle><description>In spite of recent advances in process mining, making this new technology accessible to non-technical users remains a challenge. Process maps and dashboards still seem to frighten many line of business professionals. In order to democratize this technology, we propose a natural language querying interface that allows non-technical users to retrieve relevant information and insights about their processes by simply asking questions in plain English. In this work we propose a reference architecture to support questions in natural language and provide the right answers by integrating to existing process mining tools. We combine classic natural language processing techniques (such as entity recognition and semantic parsing) with an abstract logical representation for process mining queries. We also provide a compilation of real natural language questions and an implementation of the architecture that interfaces to an existing commercial tool: Everflow. We also introduce a taxonomy for process mining related questions, and use that as a background grid to analyze the performance of this experiment. Finally, we point to potential future work opportunities in this field.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Information retrieval</subject><subject>Information Storage and Retrieval</subject><subject>IT in Business</subject><subject>Language</subject><subject>Natural language</subject><subject>Natural language processing</subject><subject>Natural Language Processing (NLP)</subject><subject>New technology</subject><subject>Process mapping</subject><subject>Query processing</subject><subject>Questions</subject><subject>Taxonomy</subject><issn>0925-9902</issn><issn>1573-7675</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAczR_N5ljKWqFghc9h2xIli1ttia7h357U1fw5mkY5r03Mz-E7hl9ZJTqp8KokZJQzkltFRC4QAumtCC60eoSLShwRQAov0Y3pewopWAaukBmhZMbp-z2eO9SN7ku4K8p5FOfOtynMeTofMBxyPiYBx9KwYc-1eEtuopuX8Ldb12iz5fnj_WGbN9f39arLfGCwUgkADMgvGq54MozDr4VrDFauqAoM61rNaPeAzgTgpI8htbIAFGpGLUAsUQPc25dXw8ro90NU051peWmkfVbo0xV8Vnl81BKDtEec39w-WQZtWdCdiZkKyH7Q8ieo8VsKlWcupD_ov9xfQPLr2gE</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Barbieri, Luciana</creator><creator>Madeira, Edmundo</creator><creator>Stroeh, Kleber</creator><creator>van der Aalst, Wil</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5295-2228</orcidid></search><sort><creationdate>20230801</creationdate><title>A natural language querying interface for process mining</title><author>Barbieri, Luciana ; Madeira, Edmundo ; Stroeh, Kleber ; van der Aalst, Wil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4991893c5b2325c129cb316874ae5018bab710cc99a8ee542feb84e9f55ff7393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Information retrieval</topic><topic>Information Storage and Retrieval</topic><topic>IT in Business</topic><topic>Language</topic><topic>Natural language</topic><topic>Natural language processing</topic><topic>Natural Language Processing (NLP)</topic><topic>New technology</topic><topic>Process mapping</topic><topic>Query processing</topic><topic>Questions</topic><topic>Taxonomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbieri, Luciana</creatorcontrib><creatorcontrib>Madeira, Edmundo</creatorcontrib><creatorcontrib>Stroeh, Kleber</creatorcontrib><creatorcontrib>van der Aalst, Wil</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbieri, Luciana</au><au>Madeira, Edmundo</au><au>Stroeh, Kleber</au><au>van der Aalst, Wil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A natural language querying interface for process mining</atitle><jtitle>Journal of intelligent information systems</jtitle><stitle>J Intell Inf Syst</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>61</volume><issue>1</issue><spage>113</spage><epage>142</epage><pages>113-142</pages><issn>0925-9902</issn><eissn>1573-7675</eissn><abstract>In spite of recent advances in process mining, making this new technology accessible to non-technical users remains a challenge. Process maps and dashboards still seem to frighten many line of business professionals. In order to democratize this technology, we propose a natural language querying interface that allows non-technical users to retrieve relevant information and insights about their processes by simply asking questions in plain English. In this work we propose a reference architecture to support questions in natural language and provide the right answers by integrating to existing process mining tools. We combine classic natural language processing techniques (such as entity recognition and semantic parsing) with an abstract logical representation for process mining queries. We also provide a compilation of real natural language questions and an implementation of the architecture that interfaces to an existing commercial tool: Everflow. We also introduce a taxonomy for process mining related questions, and use that as a background grid to analyze the performance of this experiment. Finally, we point to potential future work opportunities in this field.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10844-022-00759-9</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-5295-2228</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-9902
ispartof Journal of intelligent information systems, 2023-08, Vol.61 (1), p.113-142
issn 0925-9902
1573-7675
language eng
recordid cdi_proquest_journals_2864007858
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Computer Science
Data Structures and Information Theory
Information retrieval
Information Storage and Retrieval
IT in Business
Language
Natural language
Natural language processing
Natural Language Processing (NLP)
New technology
Process mapping
Query processing
Questions
Taxonomy
title A natural language querying interface for process mining
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A46%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20natural%20language%20querying%20interface%20for%20process%20mining&rft.jtitle=Journal%20of%20intelligent%20information%20systems&rft.au=Barbieri,%20Luciana&rft.date=2023-08-01&rft.volume=61&rft.issue=1&rft.spage=113&rft.epage=142&rft.pages=113-142&rft.issn=0925-9902&rft.eissn=1573-7675&rft_id=info:doi/10.1007/s10844-022-00759-9&rft_dat=%3Cproquest_cross%3E2864007858%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864007858&rft_id=info:pmid/&rfr_iscdi=true