Re‐Doped p ‐Type Thermoelectric SnSe Polycrystals with Enhanced Power Factor and High ZT > 2
Thermoelectric technology enables the direct interconversion between heat and electricity. SnSe has received increasing interest as a new promising thermoelectric compound due to its exceptionally high performance reported in crystals. SnSe possesses intrinsic low thermal conductivity as a congenita...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2023-09, Vol.33 (37) |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 37 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 33 |
creator | Su, Bin Han, Zhanran Jiang, Yilin Zhuang, Hua‐Lu Yu, Jincheng Pei, Jun Hu, Haihua Li, Jing‐Wei He, Yu‐Xiao Zhang, Bo‐Ping Li, Jing‐Feng |
description | Thermoelectric technology enables the direct interconversion between heat and electricity. SnSe has received increasing interest as a new promising thermoelectric compound due to its exceptionally high performance reported in crystals. SnSe possesses intrinsic low thermal conductivity as a congenital advantage for thermoelectric, but high thermoelectric performance can be hardly achieved due to the difficulty to realize efficient doping to raise its low carrier concentration to an optimal level. In this work, it is found that a series of rare earth elements are effective dopants for SnSe, which can greatly improve the electrical transport properties of
p
‐type polycrystalline SnSe. In particular, the remarkable enhancement in electrical conductivity and power factor is achieved by Na/Er co‐doping at 873 K. The lattice thermal conductivity is reduced due to the presence of abundant defects (dislocations, stacking faults, and twin boundaries). Consequently, a peak thermoelectric figure of merit
ZT
(2.1) as well as a high average
ZT
(0.77) are achieved in polycrystalline SnSe. |
doi_str_mv | 10.1002/adfm.202301971 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2863990120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2863990120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-a24b41a3a3f2becee2993b1972405f0121893548e9b31e359071846687c958de3</originalsourceid><addsrcrecordid>eNo9kMtKw0AUhgdRsFa3rgdcp84lt9kIUnsRChYbQdyEyeTEpLSZOJNSsvMRfIQ-Sx_FJ3FKpavzL_4L50PolpIBJYTdy7xYDxhhnFAR0TPUoyENPU5YfH7S9P0SXVm7JIRGEfd7KHuF3--fJ91AjhvsZNI1gJMSzFrDClRrKoUX9QLwXK86ZTrbypXF26ot8aguZa1ccK63YPBYqlYbLOscT6vPEn8k-93Dfseu0UXhMnDzf_vobTxKhlNv9jJ5Hj7OPMXCqPUk8zOfSi55wTJQAEwInrlXmE-CglBGY8EDPwaRcQo8ECSisR-GcaREEOfA--ju2NsY_bUB26ZLvTG1m0xZHHIhXAdxrsHRpYy21kCRNqZaS9OllKQHjumBY3riyP8Ae3dndQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2863990120</pqid></control><display><type>article</type><title>Re‐Doped p ‐Type Thermoelectric SnSe Polycrystals with Enhanced Power Factor and High ZT > 2</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Su, Bin ; Han, Zhanran ; Jiang, Yilin ; Zhuang, Hua‐Lu ; Yu, Jincheng ; Pei, Jun ; Hu, Haihua ; Li, Jing‐Wei ; He, Yu‐Xiao ; Zhang, Bo‐Ping ; Li, Jing‐Feng</creator><creatorcontrib>Su, Bin ; Han, Zhanran ; Jiang, Yilin ; Zhuang, Hua‐Lu ; Yu, Jincheng ; Pei, Jun ; Hu, Haihua ; Li, Jing‐Wei ; He, Yu‐Xiao ; Zhang, Bo‐Ping ; Li, Jing‐Feng</creatorcontrib><description>Thermoelectric technology enables the direct interconversion between heat and electricity. SnSe has received increasing interest as a new promising thermoelectric compound due to its exceptionally high performance reported in crystals. SnSe possesses intrinsic low thermal conductivity as a congenital advantage for thermoelectric, but high thermoelectric performance can be hardly achieved due to the difficulty to realize efficient doping to raise its low carrier concentration to an optimal level. In this work, it is found that a series of rare earth elements are effective dopants for SnSe, which can greatly improve the electrical transport properties of
p
‐type polycrystalline SnSe. In particular, the remarkable enhancement in electrical conductivity and power factor is achieved by Na/Er co‐doping at 873 K. The lattice thermal conductivity is reduced due to the presence of abundant defects (dislocations, stacking faults, and twin boundaries). Consequently, a peak thermoelectric figure of merit
ZT
(2.1) as well as a high average
ZT
(0.77) are achieved in polycrystalline SnSe.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202301971</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Carrier density ; Crystal defects ; Dislocations ; Doping ; Electrical resistivity ; Figure of merit ; Heat conductivity ; Heat transfer ; Materials science ; Polycrystals ; Power factor ; Rare earth elements ; Stacking faults ; Thermal conductivity ; Thermoelectricity ; Transport properties ; Twin boundaries</subject><ispartof>Advanced functional materials, 2023-09, Vol.33 (37)</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-a24b41a3a3f2becee2993b1972405f0121893548e9b31e359071846687c958de3</citedby><cites>FETCH-LOGICAL-c267t-a24b41a3a3f2becee2993b1972405f0121893548e9b31e359071846687c958de3</cites><orcidid>0000-0003-4718-7792 ; 0000-0002-2705-9833 ; 0000-0002-5547-8664 ; 0000-0002-8815-4260 ; 0000-0002-2210-8384 ; 0000-0002-5648-1187 ; 0000-0002-0185-0512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Su, Bin</creatorcontrib><creatorcontrib>Han, Zhanran</creatorcontrib><creatorcontrib>Jiang, Yilin</creatorcontrib><creatorcontrib>Zhuang, Hua‐Lu</creatorcontrib><creatorcontrib>Yu, Jincheng</creatorcontrib><creatorcontrib>Pei, Jun</creatorcontrib><creatorcontrib>Hu, Haihua</creatorcontrib><creatorcontrib>Li, Jing‐Wei</creatorcontrib><creatorcontrib>He, Yu‐Xiao</creatorcontrib><creatorcontrib>Zhang, Bo‐Ping</creatorcontrib><creatorcontrib>Li, Jing‐Feng</creatorcontrib><title>Re‐Doped p ‐Type Thermoelectric SnSe Polycrystals with Enhanced Power Factor and High ZT > 2</title><title>Advanced functional materials</title><description>Thermoelectric technology enables the direct interconversion between heat and electricity. SnSe has received increasing interest as a new promising thermoelectric compound due to its exceptionally high performance reported in crystals. SnSe possesses intrinsic low thermal conductivity as a congenital advantage for thermoelectric, but high thermoelectric performance can be hardly achieved due to the difficulty to realize efficient doping to raise its low carrier concentration to an optimal level. In this work, it is found that a series of rare earth elements are effective dopants for SnSe, which can greatly improve the electrical transport properties of
p
‐type polycrystalline SnSe. In particular, the remarkable enhancement in electrical conductivity and power factor is achieved by Na/Er co‐doping at 873 K. The lattice thermal conductivity is reduced due to the presence of abundant defects (dislocations, stacking faults, and twin boundaries). Consequently, a peak thermoelectric figure of merit
ZT
(2.1) as well as a high average
ZT
(0.77) are achieved in polycrystalline SnSe.</description><subject>Carrier density</subject><subject>Crystal defects</subject><subject>Dislocations</subject><subject>Doping</subject><subject>Electrical resistivity</subject><subject>Figure of merit</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Materials science</subject><subject>Polycrystals</subject><subject>Power factor</subject><subject>Rare earth elements</subject><subject>Stacking faults</subject><subject>Thermal conductivity</subject><subject>Thermoelectricity</subject><subject>Transport properties</subject><subject>Twin boundaries</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKw0AUhgdRsFa3rgdcp84lt9kIUnsRChYbQdyEyeTEpLSZOJNSsvMRfIQ-Sx_FJ3FKpavzL_4L50PolpIBJYTdy7xYDxhhnFAR0TPUoyENPU5YfH7S9P0SXVm7JIRGEfd7KHuF3--fJ91AjhvsZNI1gJMSzFrDClRrKoUX9QLwXK86ZTrbypXF26ot8aguZa1ccK63YPBYqlYbLOscT6vPEn8k-93Dfseu0UXhMnDzf_vobTxKhlNv9jJ5Hj7OPMXCqPUk8zOfSi55wTJQAEwInrlXmE-CglBGY8EDPwaRcQo8ECSisR-GcaREEOfA--ju2NsY_bUB26ZLvTG1m0xZHHIhXAdxrsHRpYy21kCRNqZaS9OllKQHjumBY3riyP8Ae3dndQ</recordid><startdate>20230912</startdate><enddate>20230912</enddate><creator>Su, Bin</creator><creator>Han, Zhanran</creator><creator>Jiang, Yilin</creator><creator>Zhuang, Hua‐Lu</creator><creator>Yu, Jincheng</creator><creator>Pei, Jun</creator><creator>Hu, Haihua</creator><creator>Li, Jing‐Wei</creator><creator>He, Yu‐Xiao</creator><creator>Zhang, Bo‐Ping</creator><creator>Li, Jing‐Feng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4718-7792</orcidid><orcidid>https://orcid.org/0000-0002-2705-9833</orcidid><orcidid>https://orcid.org/0000-0002-5547-8664</orcidid><orcidid>https://orcid.org/0000-0002-8815-4260</orcidid><orcidid>https://orcid.org/0000-0002-2210-8384</orcidid><orcidid>https://orcid.org/0000-0002-5648-1187</orcidid><orcidid>https://orcid.org/0000-0002-0185-0512</orcidid></search><sort><creationdate>20230912</creationdate><title>Re‐Doped p ‐Type Thermoelectric SnSe Polycrystals with Enhanced Power Factor and High ZT > 2</title><author>Su, Bin ; Han, Zhanran ; Jiang, Yilin ; Zhuang, Hua‐Lu ; Yu, Jincheng ; Pei, Jun ; Hu, Haihua ; Li, Jing‐Wei ; He, Yu‐Xiao ; Zhang, Bo‐Ping ; Li, Jing‐Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-a24b41a3a3f2becee2993b1972405f0121893548e9b31e359071846687c958de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carrier density</topic><topic>Crystal defects</topic><topic>Dislocations</topic><topic>Doping</topic><topic>Electrical resistivity</topic><topic>Figure of merit</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Materials science</topic><topic>Polycrystals</topic><topic>Power factor</topic><topic>Rare earth elements</topic><topic>Stacking faults</topic><topic>Thermal conductivity</topic><topic>Thermoelectricity</topic><topic>Transport properties</topic><topic>Twin boundaries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Bin</creatorcontrib><creatorcontrib>Han, Zhanran</creatorcontrib><creatorcontrib>Jiang, Yilin</creatorcontrib><creatorcontrib>Zhuang, Hua‐Lu</creatorcontrib><creatorcontrib>Yu, Jincheng</creatorcontrib><creatorcontrib>Pei, Jun</creatorcontrib><creatorcontrib>Hu, Haihua</creatorcontrib><creatorcontrib>Li, Jing‐Wei</creatorcontrib><creatorcontrib>He, Yu‐Xiao</creatorcontrib><creatorcontrib>Zhang, Bo‐Ping</creatorcontrib><creatorcontrib>Li, Jing‐Feng</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Bin</au><au>Han, Zhanran</au><au>Jiang, Yilin</au><au>Zhuang, Hua‐Lu</au><au>Yu, Jincheng</au><au>Pei, Jun</au><au>Hu, Haihua</au><au>Li, Jing‐Wei</au><au>He, Yu‐Xiao</au><au>Zhang, Bo‐Ping</au><au>Li, Jing‐Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Re‐Doped p ‐Type Thermoelectric SnSe Polycrystals with Enhanced Power Factor and High ZT > 2</atitle><jtitle>Advanced functional materials</jtitle><date>2023-09-12</date><risdate>2023</risdate><volume>33</volume><issue>37</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Thermoelectric technology enables the direct interconversion between heat and electricity. SnSe has received increasing interest as a new promising thermoelectric compound due to its exceptionally high performance reported in crystals. SnSe possesses intrinsic low thermal conductivity as a congenital advantage for thermoelectric, but high thermoelectric performance can be hardly achieved due to the difficulty to realize efficient doping to raise its low carrier concentration to an optimal level. In this work, it is found that a series of rare earth elements are effective dopants for SnSe, which can greatly improve the electrical transport properties of
p
‐type polycrystalline SnSe. In particular, the remarkable enhancement in electrical conductivity and power factor is achieved by Na/Er co‐doping at 873 K. The lattice thermal conductivity is reduced due to the presence of abundant defects (dislocations, stacking faults, and twin boundaries). Consequently, a peak thermoelectric figure of merit
ZT
(2.1) as well as a high average
ZT
(0.77) are achieved in polycrystalline SnSe.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202301971</doi><orcidid>https://orcid.org/0000-0003-4718-7792</orcidid><orcidid>https://orcid.org/0000-0002-2705-9833</orcidid><orcidid>https://orcid.org/0000-0002-5547-8664</orcidid><orcidid>https://orcid.org/0000-0002-8815-4260</orcidid><orcidid>https://orcid.org/0000-0002-2210-8384</orcidid><orcidid>https://orcid.org/0000-0002-5648-1187</orcidid><orcidid>https://orcid.org/0000-0002-0185-0512</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2023-09, Vol.33 (37) |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2863990120 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Carrier density Crystal defects Dislocations Doping Electrical resistivity Figure of merit Heat conductivity Heat transfer Materials science Polycrystals Power factor Rare earth elements Stacking faults Thermal conductivity Thermoelectricity Transport properties Twin boundaries |
title | Re‐Doped p ‐Type Thermoelectric SnSe Polycrystals with Enhanced Power Factor and High ZT > 2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A20%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Re%E2%80%90Doped%20p%20%E2%80%90Type%20Thermoelectric%20SnSe%20Polycrystals%20with%20Enhanced%20Power%20Factor%20and%20High%20ZT%C2%A0%3E%C2%A02&rft.jtitle=Advanced%20functional%20materials&rft.au=Su,%20Bin&rft.date=2023-09-12&rft.volume=33&rft.issue=37&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202301971&rft_dat=%3Cproquest_cross%3E2863990120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2863990120&rft_id=info:pmid/&rfr_iscdi=true |