Re‐Doped p ‐Type Thermoelectric SnSe Polycrystals with Enhanced Power Factor and High ZT > 2

Thermoelectric technology enables the direct interconversion between heat and electricity. SnSe has received increasing interest as a new promising thermoelectric compound due to its exceptionally high performance reported in crystals. SnSe possesses intrinsic low thermal conductivity as a congenita...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-09, Vol.33 (37)
Hauptverfasser: Su, Bin, Han, Zhanran, Jiang, Yilin, Zhuang, Hua‐Lu, Yu, Jincheng, Pei, Jun, Hu, Haihua, Li, Jing‐Wei, He, Yu‐Xiao, Zhang, Bo‐Ping, Li, Jing‐Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 37
container_start_page
container_title Advanced functional materials
container_volume 33
creator Su, Bin
Han, Zhanran
Jiang, Yilin
Zhuang, Hua‐Lu
Yu, Jincheng
Pei, Jun
Hu, Haihua
Li, Jing‐Wei
He, Yu‐Xiao
Zhang, Bo‐Ping
Li, Jing‐Feng
description Thermoelectric technology enables the direct interconversion between heat and electricity. SnSe has received increasing interest as a new promising thermoelectric compound due to its exceptionally high performance reported in crystals. SnSe possesses intrinsic low thermal conductivity as a congenital advantage for thermoelectric, but high thermoelectric performance can be hardly achieved due to the difficulty to realize efficient doping to raise its low carrier concentration to an optimal level. In this work, it is found that a series of rare earth elements are effective dopants for SnSe, which can greatly improve the electrical transport properties of p ‐type polycrystalline SnSe. In particular, the remarkable enhancement in electrical conductivity and power factor is achieved by Na/Er co‐doping at 873 K. The lattice thermal conductivity is reduced due to the presence of abundant defects (dislocations, stacking faults, and twin boundaries). Consequently, a peak thermoelectric figure of merit ZT (2.1) as well as a high average ZT (0.77) are achieved in polycrystalline SnSe.
doi_str_mv 10.1002/adfm.202301971
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2863990120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2863990120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-a24b41a3a3f2becee2993b1972405f0121893548e9b31e359071846687c958de3</originalsourceid><addsrcrecordid>eNo9kMtKw0AUhgdRsFa3rgdcp84lt9kIUnsRChYbQdyEyeTEpLSZOJNSsvMRfIQ-Sx_FJ3FKpavzL_4L50PolpIBJYTdy7xYDxhhnFAR0TPUoyENPU5YfH7S9P0SXVm7JIRGEfd7KHuF3--fJ91AjhvsZNI1gJMSzFrDClRrKoUX9QLwXK86ZTrbypXF26ot8aguZa1ccK63YPBYqlYbLOscT6vPEn8k-93Dfseu0UXhMnDzf_vobTxKhlNv9jJ5Hj7OPMXCqPUk8zOfSi55wTJQAEwInrlXmE-CglBGY8EDPwaRcQo8ECSisR-GcaREEOfA--ju2NsY_bUB26ZLvTG1m0xZHHIhXAdxrsHRpYy21kCRNqZaS9OllKQHjumBY3riyP8Ae3dndQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2863990120</pqid></control><display><type>article</type><title>Re‐Doped p ‐Type Thermoelectric SnSe Polycrystals with Enhanced Power Factor and High ZT &gt; 2</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Su, Bin ; Han, Zhanran ; Jiang, Yilin ; Zhuang, Hua‐Lu ; Yu, Jincheng ; Pei, Jun ; Hu, Haihua ; Li, Jing‐Wei ; He, Yu‐Xiao ; Zhang, Bo‐Ping ; Li, Jing‐Feng</creator><creatorcontrib>Su, Bin ; Han, Zhanran ; Jiang, Yilin ; Zhuang, Hua‐Lu ; Yu, Jincheng ; Pei, Jun ; Hu, Haihua ; Li, Jing‐Wei ; He, Yu‐Xiao ; Zhang, Bo‐Ping ; Li, Jing‐Feng</creatorcontrib><description>Thermoelectric technology enables the direct interconversion between heat and electricity. SnSe has received increasing interest as a new promising thermoelectric compound due to its exceptionally high performance reported in crystals. SnSe possesses intrinsic low thermal conductivity as a congenital advantage for thermoelectric, but high thermoelectric performance can be hardly achieved due to the difficulty to realize efficient doping to raise its low carrier concentration to an optimal level. In this work, it is found that a series of rare earth elements are effective dopants for SnSe, which can greatly improve the electrical transport properties of p ‐type polycrystalline SnSe. In particular, the remarkable enhancement in electrical conductivity and power factor is achieved by Na/Er co‐doping at 873 K. The lattice thermal conductivity is reduced due to the presence of abundant defects (dislocations, stacking faults, and twin boundaries). Consequently, a peak thermoelectric figure of merit ZT (2.1) as well as a high average ZT (0.77) are achieved in polycrystalline SnSe.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202301971</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Carrier density ; Crystal defects ; Dislocations ; Doping ; Electrical resistivity ; Figure of merit ; Heat conductivity ; Heat transfer ; Materials science ; Polycrystals ; Power factor ; Rare earth elements ; Stacking faults ; Thermal conductivity ; Thermoelectricity ; Transport properties ; Twin boundaries</subject><ispartof>Advanced functional materials, 2023-09, Vol.33 (37)</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-a24b41a3a3f2becee2993b1972405f0121893548e9b31e359071846687c958de3</citedby><cites>FETCH-LOGICAL-c267t-a24b41a3a3f2becee2993b1972405f0121893548e9b31e359071846687c958de3</cites><orcidid>0000-0003-4718-7792 ; 0000-0002-2705-9833 ; 0000-0002-5547-8664 ; 0000-0002-8815-4260 ; 0000-0002-2210-8384 ; 0000-0002-5648-1187 ; 0000-0002-0185-0512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Su, Bin</creatorcontrib><creatorcontrib>Han, Zhanran</creatorcontrib><creatorcontrib>Jiang, Yilin</creatorcontrib><creatorcontrib>Zhuang, Hua‐Lu</creatorcontrib><creatorcontrib>Yu, Jincheng</creatorcontrib><creatorcontrib>Pei, Jun</creatorcontrib><creatorcontrib>Hu, Haihua</creatorcontrib><creatorcontrib>Li, Jing‐Wei</creatorcontrib><creatorcontrib>He, Yu‐Xiao</creatorcontrib><creatorcontrib>Zhang, Bo‐Ping</creatorcontrib><creatorcontrib>Li, Jing‐Feng</creatorcontrib><title>Re‐Doped p ‐Type Thermoelectric SnSe Polycrystals with Enhanced Power Factor and High ZT &gt; 2</title><title>Advanced functional materials</title><description>Thermoelectric technology enables the direct interconversion between heat and electricity. SnSe has received increasing interest as a new promising thermoelectric compound due to its exceptionally high performance reported in crystals. SnSe possesses intrinsic low thermal conductivity as a congenital advantage for thermoelectric, but high thermoelectric performance can be hardly achieved due to the difficulty to realize efficient doping to raise its low carrier concentration to an optimal level. In this work, it is found that a series of rare earth elements are effective dopants for SnSe, which can greatly improve the electrical transport properties of p ‐type polycrystalline SnSe. In particular, the remarkable enhancement in electrical conductivity and power factor is achieved by Na/Er co‐doping at 873 K. The lattice thermal conductivity is reduced due to the presence of abundant defects (dislocations, stacking faults, and twin boundaries). Consequently, a peak thermoelectric figure of merit ZT (2.1) as well as a high average ZT (0.77) are achieved in polycrystalline SnSe.</description><subject>Carrier density</subject><subject>Crystal defects</subject><subject>Dislocations</subject><subject>Doping</subject><subject>Electrical resistivity</subject><subject>Figure of merit</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Materials science</subject><subject>Polycrystals</subject><subject>Power factor</subject><subject>Rare earth elements</subject><subject>Stacking faults</subject><subject>Thermal conductivity</subject><subject>Thermoelectricity</subject><subject>Transport properties</subject><subject>Twin boundaries</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKw0AUhgdRsFa3rgdcp84lt9kIUnsRChYbQdyEyeTEpLSZOJNSsvMRfIQ-Sx_FJ3FKpavzL_4L50PolpIBJYTdy7xYDxhhnFAR0TPUoyENPU5YfH7S9P0SXVm7JIRGEfd7KHuF3--fJ91AjhvsZNI1gJMSzFrDClRrKoUX9QLwXK86ZTrbypXF26ot8aguZa1ccK63YPBYqlYbLOscT6vPEn8k-93Dfseu0UXhMnDzf_vobTxKhlNv9jJ5Hj7OPMXCqPUk8zOfSi55wTJQAEwInrlXmE-CglBGY8EDPwaRcQo8ECSisR-GcaREEOfA--ju2NsY_bUB26ZLvTG1m0xZHHIhXAdxrsHRpYy21kCRNqZaS9OllKQHjumBY3riyP8Ae3dndQ</recordid><startdate>20230912</startdate><enddate>20230912</enddate><creator>Su, Bin</creator><creator>Han, Zhanran</creator><creator>Jiang, Yilin</creator><creator>Zhuang, Hua‐Lu</creator><creator>Yu, Jincheng</creator><creator>Pei, Jun</creator><creator>Hu, Haihua</creator><creator>Li, Jing‐Wei</creator><creator>He, Yu‐Xiao</creator><creator>Zhang, Bo‐Ping</creator><creator>Li, Jing‐Feng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4718-7792</orcidid><orcidid>https://orcid.org/0000-0002-2705-9833</orcidid><orcidid>https://orcid.org/0000-0002-5547-8664</orcidid><orcidid>https://orcid.org/0000-0002-8815-4260</orcidid><orcidid>https://orcid.org/0000-0002-2210-8384</orcidid><orcidid>https://orcid.org/0000-0002-5648-1187</orcidid><orcidid>https://orcid.org/0000-0002-0185-0512</orcidid></search><sort><creationdate>20230912</creationdate><title>Re‐Doped p ‐Type Thermoelectric SnSe Polycrystals with Enhanced Power Factor and High ZT &gt; 2</title><author>Su, Bin ; Han, Zhanran ; Jiang, Yilin ; Zhuang, Hua‐Lu ; Yu, Jincheng ; Pei, Jun ; Hu, Haihua ; Li, Jing‐Wei ; He, Yu‐Xiao ; Zhang, Bo‐Ping ; Li, Jing‐Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-a24b41a3a3f2becee2993b1972405f0121893548e9b31e359071846687c958de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carrier density</topic><topic>Crystal defects</topic><topic>Dislocations</topic><topic>Doping</topic><topic>Electrical resistivity</topic><topic>Figure of merit</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Materials science</topic><topic>Polycrystals</topic><topic>Power factor</topic><topic>Rare earth elements</topic><topic>Stacking faults</topic><topic>Thermal conductivity</topic><topic>Thermoelectricity</topic><topic>Transport properties</topic><topic>Twin boundaries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Bin</creatorcontrib><creatorcontrib>Han, Zhanran</creatorcontrib><creatorcontrib>Jiang, Yilin</creatorcontrib><creatorcontrib>Zhuang, Hua‐Lu</creatorcontrib><creatorcontrib>Yu, Jincheng</creatorcontrib><creatorcontrib>Pei, Jun</creatorcontrib><creatorcontrib>Hu, Haihua</creatorcontrib><creatorcontrib>Li, Jing‐Wei</creatorcontrib><creatorcontrib>He, Yu‐Xiao</creatorcontrib><creatorcontrib>Zhang, Bo‐Ping</creatorcontrib><creatorcontrib>Li, Jing‐Feng</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Bin</au><au>Han, Zhanran</au><au>Jiang, Yilin</au><au>Zhuang, Hua‐Lu</au><au>Yu, Jincheng</au><au>Pei, Jun</au><au>Hu, Haihua</au><au>Li, Jing‐Wei</au><au>He, Yu‐Xiao</au><au>Zhang, Bo‐Ping</au><au>Li, Jing‐Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Re‐Doped p ‐Type Thermoelectric SnSe Polycrystals with Enhanced Power Factor and High ZT &gt; 2</atitle><jtitle>Advanced functional materials</jtitle><date>2023-09-12</date><risdate>2023</risdate><volume>33</volume><issue>37</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Thermoelectric technology enables the direct interconversion between heat and electricity. SnSe has received increasing interest as a new promising thermoelectric compound due to its exceptionally high performance reported in crystals. SnSe possesses intrinsic low thermal conductivity as a congenital advantage for thermoelectric, but high thermoelectric performance can be hardly achieved due to the difficulty to realize efficient doping to raise its low carrier concentration to an optimal level. In this work, it is found that a series of rare earth elements are effective dopants for SnSe, which can greatly improve the electrical transport properties of p ‐type polycrystalline SnSe. In particular, the remarkable enhancement in electrical conductivity and power factor is achieved by Na/Er co‐doping at 873 K. The lattice thermal conductivity is reduced due to the presence of abundant defects (dislocations, stacking faults, and twin boundaries). Consequently, a peak thermoelectric figure of merit ZT (2.1) as well as a high average ZT (0.77) are achieved in polycrystalline SnSe.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202301971</doi><orcidid>https://orcid.org/0000-0003-4718-7792</orcidid><orcidid>https://orcid.org/0000-0002-2705-9833</orcidid><orcidid>https://orcid.org/0000-0002-5547-8664</orcidid><orcidid>https://orcid.org/0000-0002-8815-4260</orcidid><orcidid>https://orcid.org/0000-0002-2210-8384</orcidid><orcidid>https://orcid.org/0000-0002-5648-1187</orcidid><orcidid>https://orcid.org/0000-0002-0185-0512</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-09, Vol.33 (37)
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2863990120
source Wiley Online Library - AutoHoldings Journals
subjects Carrier density
Crystal defects
Dislocations
Doping
Electrical resistivity
Figure of merit
Heat conductivity
Heat transfer
Materials science
Polycrystals
Power factor
Rare earth elements
Stacking faults
Thermal conductivity
Thermoelectricity
Transport properties
Twin boundaries
title Re‐Doped p ‐Type Thermoelectric SnSe Polycrystals with Enhanced Power Factor and High ZT > 2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A20%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Re%E2%80%90Doped%20p%20%E2%80%90Type%20Thermoelectric%20SnSe%20Polycrystals%20with%20Enhanced%20Power%20Factor%20and%20High%20ZT%C2%A0%3E%C2%A02&rft.jtitle=Advanced%20functional%20materials&rft.au=Su,%20Bin&rft.date=2023-09-12&rft.volume=33&rft.issue=37&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202301971&rft_dat=%3Cproquest_cross%3E2863990120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2863990120&rft_id=info:pmid/&rfr_iscdi=true