Double‐Microcrack Coupling Stretchable Neural Electrode for Electrophysiological Communication

Developing neural electrodes with high stretchability and stable conductivity is a promising method to explore applications of them in biological medicine and electronic skin. However, considering the poor mechanical stretchability of typical conductive materials, maintaining the connection of elect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-09, Vol.33 (37)
Hauptverfasser: Yang, Dan, Tian, Gongwei, Liang, Cuiyuan, Yang, Zixu, Zhao, Qinyi, Chen, Jianhui, Ma, Cong, Jiang, Ying, An, Na, Liu, Yan, Qi, Dianpeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 37
container_start_page
container_title Advanced functional materials
container_volume 33
creator Yang, Dan
Tian, Gongwei
Liang, Cuiyuan
Yang, Zixu
Zhao, Qinyi
Chen, Jianhui
Ma, Cong
Jiang, Ying
An, Na
Liu, Yan
Qi, Dianpeng
description Developing neural electrodes with high stretchability and stable conductivity is a promising method to explore applications of them in biological medicine and electronic skin. However, considering the poor mechanical stretchability of typical conductive materials, maintaining the connection of electrode conductive paths under high stretching is still a challenge. Herein, for the first time, a double‐microcrack coupling strategy for highly stretchable neural electrodes is proposed. Compared with single‐layer stretchable microcrack electrodes, the design utilizes the complement between two gold microcrack films to contribute more conductive paths. It shows that the resistance change ( R / R 0 ) of the electrode under 100% strain is about 5.6 times, which is much lower than other electrodes and exhibits a high stretchability of ≈200%. Simultaneously, this design is an encapsulation‐free design which avoids the electrode performance degradation caused by encapsulation. Furthermore, it is found that the adhesion strength between metal electrode and substrate is critical to the stretchability and stability of electrodes, so polydimethylsiloxane 0.9 ‐isophorone diisocyanate elastomer (PDMS 0.9 ‐IPDI), whose adhesion to gold electrode is 4.5 times higher than that of the commercial polydimethylsiloxane (PDMS), is synthesized. Finally, the electrophysiological communication between different organisms by electrodes is successfully demonstrated.
doi_str_mv 10.1002/adfm.202300412
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2863990066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2863990066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-6da171586912184dda5dd68ef7f0957c5b4b310a4000bfe1d79792f8e737aaf33</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqWwZR2JdcrYTuxkiUJ5SAUWgMTOOH60KUkc7GTRHZ_AN_IlpCp0NXekozuag9A5hhkGIJdS22ZGgFCABJMDNMEMs5gCyQ73Gb8do5MQ1gCYc5pM0Pu1G8ra_Hx9P1TKO-Wl-ogKN3R11S6j596bXq3kSESPZvCyjua1Ub132kTW-f-tW21C5Wq3rNSIFK5phnaMfeXaU3RkZR3M2d-coteb-UtxFy-ebu-Lq0WsCON9zLTEHKcZyzHBWaK1TLVmmbHcQp5ylZZJSTHIBABKa7DmOc-JzQynXEpL6RRd7Ho77z4HE3qxdoNvx5OCZIzmOQBjIzXbUeOvIXhjReerRvqNwCC2FsXWothbpL_3a2fX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2863990066</pqid></control><display><type>article</type><title>Double‐Microcrack Coupling Stretchable Neural Electrode for Electrophysiological Communication</title><source>Wiley Online Library</source><creator>Yang, Dan ; Tian, Gongwei ; Liang, Cuiyuan ; Yang, Zixu ; Zhao, Qinyi ; Chen, Jianhui ; Ma, Cong ; Jiang, Ying ; An, Na ; Liu, Yan ; Qi, Dianpeng</creator><creatorcontrib>Yang, Dan ; Tian, Gongwei ; Liang, Cuiyuan ; Yang, Zixu ; Zhao, Qinyi ; Chen, Jianhui ; Ma, Cong ; Jiang, Ying ; An, Na ; Liu, Yan ; Qi, Dianpeng</creatorcontrib><description>Developing neural electrodes with high stretchability and stable conductivity is a promising method to explore applications of them in biological medicine and electronic skin. However, considering the poor mechanical stretchability of typical conductive materials, maintaining the connection of electrode conductive paths under high stretching is still a challenge. Herein, for the first time, a double‐microcrack coupling strategy for highly stretchable neural electrodes is proposed. Compared with single‐layer stretchable microcrack electrodes, the design utilizes the complement between two gold microcrack films to contribute more conductive paths. It shows that the resistance change ( R / R 0 ) of the electrode under 100% strain is about 5.6 times, which is much lower than other electrodes and exhibits a high stretchability of ≈200%. Simultaneously, this design is an encapsulation‐free design which avoids the electrode performance degradation caused by encapsulation. Furthermore, it is found that the adhesion strength between metal electrode and substrate is critical to the stretchability and stability of electrodes, so polydimethylsiloxane 0.9 ‐isophorone diisocyanate elastomer (PDMS 0.9 ‐IPDI), whose adhesion to gold electrode is 4.5 times higher than that of the commercial polydimethylsiloxane (PDMS), is synthesized. Finally, the electrophysiological communication between different organisms by electrodes is successfully demonstrated.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202300412</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Adhesive strength ; Coupling ; Diisocyanates ; Elastomers ; Electrodes ; Encapsulation ; Gold ; Materials science ; Microcracks ; Performance degradation ; Polydimethylsiloxane ; Stretchability ; Substrates</subject><ispartof>Advanced functional materials, 2023-09, Vol.33 (37)</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-6da171586912184dda5dd68ef7f0957c5b4b310a4000bfe1d79792f8e737aaf33</citedby><cites>FETCH-LOGICAL-c267t-6da171586912184dda5dd68ef7f0957c5b4b310a4000bfe1d79792f8e737aaf33</cites><orcidid>0000-0002-8245-8183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Dan</creatorcontrib><creatorcontrib>Tian, Gongwei</creatorcontrib><creatorcontrib>Liang, Cuiyuan</creatorcontrib><creatorcontrib>Yang, Zixu</creatorcontrib><creatorcontrib>Zhao, Qinyi</creatorcontrib><creatorcontrib>Chen, Jianhui</creatorcontrib><creatorcontrib>Ma, Cong</creatorcontrib><creatorcontrib>Jiang, Ying</creatorcontrib><creatorcontrib>An, Na</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Qi, Dianpeng</creatorcontrib><title>Double‐Microcrack Coupling Stretchable Neural Electrode for Electrophysiological Communication</title><title>Advanced functional materials</title><description>Developing neural electrodes with high stretchability and stable conductivity is a promising method to explore applications of them in biological medicine and electronic skin. However, considering the poor mechanical stretchability of typical conductive materials, maintaining the connection of electrode conductive paths under high stretching is still a challenge. Herein, for the first time, a double‐microcrack coupling strategy for highly stretchable neural electrodes is proposed. Compared with single‐layer stretchable microcrack electrodes, the design utilizes the complement between two gold microcrack films to contribute more conductive paths. It shows that the resistance change ( R / R 0 ) of the electrode under 100% strain is about 5.6 times, which is much lower than other electrodes and exhibits a high stretchability of ≈200%. Simultaneously, this design is an encapsulation‐free design which avoids the electrode performance degradation caused by encapsulation. Furthermore, it is found that the adhesion strength between metal electrode and substrate is critical to the stretchability and stability of electrodes, so polydimethylsiloxane 0.9 ‐isophorone diisocyanate elastomer (PDMS 0.9 ‐IPDI), whose adhesion to gold electrode is 4.5 times higher than that of the commercial polydimethylsiloxane (PDMS), is synthesized. Finally, the electrophysiological communication between different organisms by electrodes is successfully demonstrated.</description><subject>Adhesive strength</subject><subject>Coupling</subject><subject>Diisocyanates</subject><subject>Elastomers</subject><subject>Electrodes</subject><subject>Encapsulation</subject><subject>Gold</subject><subject>Materials science</subject><subject>Microcracks</subject><subject>Performance degradation</subject><subject>Polydimethylsiloxane</subject><subject>Stretchability</subject><subject>Substrates</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqWwZR2JdcrYTuxkiUJ5SAUWgMTOOH60KUkc7GTRHZ_AN_IlpCp0NXekozuag9A5hhkGIJdS22ZGgFCABJMDNMEMs5gCyQ73Gb8do5MQ1gCYc5pM0Pu1G8ra_Hx9P1TKO-Wl-ogKN3R11S6j596bXq3kSESPZvCyjua1Ub132kTW-f-tW21C5Wq3rNSIFK5phnaMfeXaU3RkZR3M2d-coteb-UtxFy-ebu-Lq0WsCON9zLTEHKcZyzHBWaK1TLVmmbHcQp5ylZZJSTHIBABKa7DmOc-JzQynXEpL6RRd7Ho77z4HE3qxdoNvx5OCZIzmOQBjIzXbUeOvIXhjReerRvqNwCC2FsXWothbpL_3a2fX</recordid><startdate>20230912</startdate><enddate>20230912</enddate><creator>Yang, Dan</creator><creator>Tian, Gongwei</creator><creator>Liang, Cuiyuan</creator><creator>Yang, Zixu</creator><creator>Zhao, Qinyi</creator><creator>Chen, Jianhui</creator><creator>Ma, Cong</creator><creator>Jiang, Ying</creator><creator>An, Na</creator><creator>Liu, Yan</creator><creator>Qi, Dianpeng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8245-8183</orcidid></search><sort><creationdate>20230912</creationdate><title>Double‐Microcrack Coupling Stretchable Neural Electrode for Electrophysiological Communication</title><author>Yang, Dan ; Tian, Gongwei ; Liang, Cuiyuan ; Yang, Zixu ; Zhao, Qinyi ; Chen, Jianhui ; Ma, Cong ; Jiang, Ying ; An, Na ; Liu, Yan ; Qi, Dianpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-6da171586912184dda5dd68ef7f0957c5b4b310a4000bfe1d79792f8e737aaf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adhesive strength</topic><topic>Coupling</topic><topic>Diisocyanates</topic><topic>Elastomers</topic><topic>Electrodes</topic><topic>Encapsulation</topic><topic>Gold</topic><topic>Materials science</topic><topic>Microcracks</topic><topic>Performance degradation</topic><topic>Polydimethylsiloxane</topic><topic>Stretchability</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Dan</creatorcontrib><creatorcontrib>Tian, Gongwei</creatorcontrib><creatorcontrib>Liang, Cuiyuan</creatorcontrib><creatorcontrib>Yang, Zixu</creatorcontrib><creatorcontrib>Zhao, Qinyi</creatorcontrib><creatorcontrib>Chen, Jianhui</creatorcontrib><creatorcontrib>Ma, Cong</creatorcontrib><creatorcontrib>Jiang, Ying</creatorcontrib><creatorcontrib>An, Na</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Qi, Dianpeng</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Dan</au><au>Tian, Gongwei</au><au>Liang, Cuiyuan</au><au>Yang, Zixu</au><au>Zhao, Qinyi</au><au>Chen, Jianhui</au><au>Ma, Cong</au><au>Jiang, Ying</au><au>An, Na</au><au>Liu, Yan</au><au>Qi, Dianpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Double‐Microcrack Coupling Stretchable Neural Electrode for Electrophysiological Communication</atitle><jtitle>Advanced functional materials</jtitle><date>2023-09-12</date><risdate>2023</risdate><volume>33</volume><issue>37</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Developing neural electrodes with high stretchability and stable conductivity is a promising method to explore applications of them in biological medicine and electronic skin. However, considering the poor mechanical stretchability of typical conductive materials, maintaining the connection of electrode conductive paths under high stretching is still a challenge. Herein, for the first time, a double‐microcrack coupling strategy for highly stretchable neural electrodes is proposed. Compared with single‐layer stretchable microcrack electrodes, the design utilizes the complement between two gold microcrack films to contribute more conductive paths. It shows that the resistance change ( R / R 0 ) of the electrode under 100% strain is about 5.6 times, which is much lower than other electrodes and exhibits a high stretchability of ≈200%. Simultaneously, this design is an encapsulation‐free design which avoids the electrode performance degradation caused by encapsulation. Furthermore, it is found that the adhesion strength between metal electrode and substrate is critical to the stretchability and stability of electrodes, so polydimethylsiloxane 0.9 ‐isophorone diisocyanate elastomer (PDMS 0.9 ‐IPDI), whose adhesion to gold electrode is 4.5 times higher than that of the commercial polydimethylsiloxane (PDMS), is synthesized. Finally, the electrophysiological communication between different organisms by electrodes is successfully demonstrated.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202300412</doi><orcidid>https://orcid.org/0000-0002-8245-8183</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-09, Vol.33 (37)
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2863990066
source Wiley Online Library
subjects Adhesive strength
Coupling
Diisocyanates
Elastomers
Electrodes
Encapsulation
Gold
Materials science
Microcracks
Performance degradation
Polydimethylsiloxane
Stretchability
Substrates
title Double‐Microcrack Coupling Stretchable Neural Electrode for Electrophysiological Communication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A58%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Double%E2%80%90Microcrack%20Coupling%20Stretchable%20Neural%20Electrode%20for%20Electrophysiological%20Communication&rft.jtitle=Advanced%20functional%20materials&rft.au=Yang,%20Dan&rft.date=2023-09-12&rft.volume=33&rft.issue=37&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202300412&rft_dat=%3Cproquest_cross%3E2863990066%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2863990066&rft_id=info:pmid/&rfr_iscdi=true