Double‐Microcrack Coupling Stretchable Neural Electrode for Electrophysiological Communication
Developing neural electrodes with high stretchability and stable conductivity is a promising method to explore applications of them in biological medicine and electronic skin. However, considering the poor mechanical stretchability of typical conductive materials, maintaining the connection of elect...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2023-09, Vol.33 (37) |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 37 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 33 |
creator | Yang, Dan Tian, Gongwei Liang, Cuiyuan Yang, Zixu Zhao, Qinyi Chen, Jianhui Ma, Cong Jiang, Ying An, Na Liu, Yan Qi, Dianpeng |
description | Developing neural electrodes with high stretchability and stable conductivity is a promising method to explore applications of them in biological medicine and electronic skin. However, considering the poor mechanical stretchability of typical conductive materials, maintaining the connection of electrode conductive paths under high stretching is still a challenge. Herein, for the first time, a double‐microcrack coupling strategy for highly stretchable neural electrodes is proposed. Compared with single‐layer stretchable microcrack electrodes, the design utilizes the complement between two gold microcrack films to contribute more conductive paths. It shows that the resistance change (
R
/
R
0
) of the electrode under 100% strain is about 5.6 times, which is much lower than other electrodes and exhibits a high stretchability of ≈200%. Simultaneously, this design is an encapsulation‐free design which avoids the electrode performance degradation caused by encapsulation. Furthermore, it is found that the adhesion strength between metal electrode and substrate is critical to the stretchability and stability of electrodes, so polydimethylsiloxane
0.9
‐isophorone diisocyanate elastomer (PDMS
0.9
‐IPDI), whose adhesion to gold electrode is 4.5 times higher than that of the commercial polydimethylsiloxane (PDMS), is synthesized. Finally, the electrophysiological communication between different organisms by electrodes is successfully demonstrated. |
doi_str_mv | 10.1002/adfm.202300412 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2863990066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2863990066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-6da171586912184dda5dd68ef7f0957c5b4b310a4000bfe1d79792f8e737aaf33</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqWwZR2JdcrYTuxkiUJ5SAUWgMTOOH60KUkc7GTRHZ_AN_IlpCp0NXekozuag9A5hhkGIJdS22ZGgFCABJMDNMEMs5gCyQ73Gb8do5MQ1gCYc5pM0Pu1G8ra_Hx9P1TKO-Wl-ogKN3R11S6j596bXq3kSESPZvCyjua1Ub132kTW-f-tW21C5Wq3rNSIFK5phnaMfeXaU3RkZR3M2d-coteb-UtxFy-ebu-Lq0WsCON9zLTEHKcZyzHBWaK1TLVmmbHcQp5ylZZJSTHIBABKa7DmOc-JzQynXEpL6RRd7Ho77z4HE3qxdoNvx5OCZIzmOQBjIzXbUeOvIXhjReerRvqNwCC2FsXWothbpL_3a2fX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2863990066</pqid></control><display><type>article</type><title>Double‐Microcrack Coupling Stretchable Neural Electrode for Electrophysiological Communication</title><source>Wiley Online Library</source><creator>Yang, Dan ; Tian, Gongwei ; Liang, Cuiyuan ; Yang, Zixu ; Zhao, Qinyi ; Chen, Jianhui ; Ma, Cong ; Jiang, Ying ; An, Na ; Liu, Yan ; Qi, Dianpeng</creator><creatorcontrib>Yang, Dan ; Tian, Gongwei ; Liang, Cuiyuan ; Yang, Zixu ; Zhao, Qinyi ; Chen, Jianhui ; Ma, Cong ; Jiang, Ying ; An, Na ; Liu, Yan ; Qi, Dianpeng</creatorcontrib><description>Developing neural electrodes with high stretchability and stable conductivity is a promising method to explore applications of them in biological medicine and electronic skin. However, considering the poor mechanical stretchability of typical conductive materials, maintaining the connection of electrode conductive paths under high stretching is still a challenge. Herein, for the first time, a double‐microcrack coupling strategy for highly stretchable neural electrodes is proposed. Compared with single‐layer stretchable microcrack electrodes, the design utilizes the complement between two gold microcrack films to contribute more conductive paths. It shows that the resistance change (
R
/
R
0
) of the electrode under 100% strain is about 5.6 times, which is much lower than other electrodes and exhibits a high stretchability of ≈200%. Simultaneously, this design is an encapsulation‐free design which avoids the electrode performance degradation caused by encapsulation. Furthermore, it is found that the adhesion strength between metal electrode and substrate is critical to the stretchability and stability of electrodes, so polydimethylsiloxane
0.9
‐isophorone diisocyanate elastomer (PDMS
0.9
‐IPDI), whose adhesion to gold electrode is 4.5 times higher than that of the commercial polydimethylsiloxane (PDMS), is synthesized. Finally, the electrophysiological communication between different organisms by electrodes is successfully demonstrated.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202300412</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Adhesive strength ; Coupling ; Diisocyanates ; Elastomers ; Electrodes ; Encapsulation ; Gold ; Materials science ; Microcracks ; Performance degradation ; Polydimethylsiloxane ; Stretchability ; Substrates</subject><ispartof>Advanced functional materials, 2023-09, Vol.33 (37)</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-6da171586912184dda5dd68ef7f0957c5b4b310a4000bfe1d79792f8e737aaf33</citedby><cites>FETCH-LOGICAL-c267t-6da171586912184dda5dd68ef7f0957c5b4b310a4000bfe1d79792f8e737aaf33</cites><orcidid>0000-0002-8245-8183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Dan</creatorcontrib><creatorcontrib>Tian, Gongwei</creatorcontrib><creatorcontrib>Liang, Cuiyuan</creatorcontrib><creatorcontrib>Yang, Zixu</creatorcontrib><creatorcontrib>Zhao, Qinyi</creatorcontrib><creatorcontrib>Chen, Jianhui</creatorcontrib><creatorcontrib>Ma, Cong</creatorcontrib><creatorcontrib>Jiang, Ying</creatorcontrib><creatorcontrib>An, Na</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Qi, Dianpeng</creatorcontrib><title>Double‐Microcrack Coupling Stretchable Neural Electrode for Electrophysiological Communication</title><title>Advanced functional materials</title><description>Developing neural electrodes with high stretchability and stable conductivity is a promising method to explore applications of them in biological medicine and electronic skin. However, considering the poor mechanical stretchability of typical conductive materials, maintaining the connection of electrode conductive paths under high stretching is still a challenge. Herein, for the first time, a double‐microcrack coupling strategy for highly stretchable neural electrodes is proposed. Compared with single‐layer stretchable microcrack electrodes, the design utilizes the complement between two gold microcrack films to contribute more conductive paths. It shows that the resistance change (
R
/
R
0
) of the electrode under 100% strain is about 5.6 times, which is much lower than other electrodes and exhibits a high stretchability of ≈200%. Simultaneously, this design is an encapsulation‐free design which avoids the electrode performance degradation caused by encapsulation. Furthermore, it is found that the adhesion strength between metal electrode and substrate is critical to the stretchability and stability of electrodes, so polydimethylsiloxane
0.9
‐isophorone diisocyanate elastomer (PDMS
0.9
‐IPDI), whose adhesion to gold electrode is 4.5 times higher than that of the commercial polydimethylsiloxane (PDMS), is synthesized. Finally, the electrophysiological communication between different organisms by electrodes is successfully demonstrated.</description><subject>Adhesive strength</subject><subject>Coupling</subject><subject>Diisocyanates</subject><subject>Elastomers</subject><subject>Electrodes</subject><subject>Encapsulation</subject><subject>Gold</subject><subject>Materials science</subject><subject>Microcracks</subject><subject>Performance degradation</subject><subject>Polydimethylsiloxane</subject><subject>Stretchability</subject><subject>Substrates</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqWwZR2JdcrYTuxkiUJ5SAUWgMTOOH60KUkc7GTRHZ_AN_IlpCp0NXekozuag9A5hhkGIJdS22ZGgFCABJMDNMEMs5gCyQ73Gb8do5MQ1gCYc5pM0Pu1G8ra_Hx9P1TKO-Wl-ogKN3R11S6j596bXq3kSESPZvCyjua1Ub132kTW-f-tW21C5Wq3rNSIFK5phnaMfeXaU3RkZR3M2d-coteb-UtxFy-ebu-Lq0WsCON9zLTEHKcZyzHBWaK1TLVmmbHcQp5ylZZJSTHIBABKa7DmOc-JzQynXEpL6RRd7Ho77z4HE3qxdoNvx5OCZIzmOQBjIzXbUeOvIXhjReerRvqNwCC2FsXWothbpL_3a2fX</recordid><startdate>20230912</startdate><enddate>20230912</enddate><creator>Yang, Dan</creator><creator>Tian, Gongwei</creator><creator>Liang, Cuiyuan</creator><creator>Yang, Zixu</creator><creator>Zhao, Qinyi</creator><creator>Chen, Jianhui</creator><creator>Ma, Cong</creator><creator>Jiang, Ying</creator><creator>An, Na</creator><creator>Liu, Yan</creator><creator>Qi, Dianpeng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8245-8183</orcidid></search><sort><creationdate>20230912</creationdate><title>Double‐Microcrack Coupling Stretchable Neural Electrode for Electrophysiological Communication</title><author>Yang, Dan ; Tian, Gongwei ; Liang, Cuiyuan ; Yang, Zixu ; Zhao, Qinyi ; Chen, Jianhui ; Ma, Cong ; Jiang, Ying ; An, Na ; Liu, Yan ; Qi, Dianpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-6da171586912184dda5dd68ef7f0957c5b4b310a4000bfe1d79792f8e737aaf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adhesive strength</topic><topic>Coupling</topic><topic>Diisocyanates</topic><topic>Elastomers</topic><topic>Electrodes</topic><topic>Encapsulation</topic><topic>Gold</topic><topic>Materials science</topic><topic>Microcracks</topic><topic>Performance degradation</topic><topic>Polydimethylsiloxane</topic><topic>Stretchability</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Dan</creatorcontrib><creatorcontrib>Tian, Gongwei</creatorcontrib><creatorcontrib>Liang, Cuiyuan</creatorcontrib><creatorcontrib>Yang, Zixu</creatorcontrib><creatorcontrib>Zhao, Qinyi</creatorcontrib><creatorcontrib>Chen, Jianhui</creatorcontrib><creatorcontrib>Ma, Cong</creatorcontrib><creatorcontrib>Jiang, Ying</creatorcontrib><creatorcontrib>An, Na</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Qi, Dianpeng</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Dan</au><au>Tian, Gongwei</au><au>Liang, Cuiyuan</au><au>Yang, Zixu</au><au>Zhao, Qinyi</au><au>Chen, Jianhui</au><au>Ma, Cong</au><au>Jiang, Ying</au><au>An, Na</au><au>Liu, Yan</au><au>Qi, Dianpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Double‐Microcrack Coupling Stretchable Neural Electrode for Electrophysiological Communication</atitle><jtitle>Advanced functional materials</jtitle><date>2023-09-12</date><risdate>2023</risdate><volume>33</volume><issue>37</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Developing neural electrodes with high stretchability and stable conductivity is a promising method to explore applications of them in biological medicine and electronic skin. However, considering the poor mechanical stretchability of typical conductive materials, maintaining the connection of electrode conductive paths under high stretching is still a challenge. Herein, for the first time, a double‐microcrack coupling strategy for highly stretchable neural electrodes is proposed. Compared with single‐layer stretchable microcrack electrodes, the design utilizes the complement between two gold microcrack films to contribute more conductive paths. It shows that the resistance change (
R
/
R
0
) of the electrode under 100% strain is about 5.6 times, which is much lower than other electrodes and exhibits a high stretchability of ≈200%. Simultaneously, this design is an encapsulation‐free design which avoids the electrode performance degradation caused by encapsulation. Furthermore, it is found that the adhesion strength between metal electrode and substrate is critical to the stretchability and stability of electrodes, so polydimethylsiloxane
0.9
‐isophorone diisocyanate elastomer (PDMS
0.9
‐IPDI), whose adhesion to gold electrode is 4.5 times higher than that of the commercial polydimethylsiloxane (PDMS), is synthesized. Finally, the electrophysiological communication between different organisms by electrodes is successfully demonstrated.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202300412</doi><orcidid>https://orcid.org/0000-0002-8245-8183</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2023-09, Vol.33 (37) |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2863990066 |
source | Wiley Online Library |
subjects | Adhesive strength Coupling Diisocyanates Elastomers Electrodes Encapsulation Gold Materials science Microcracks Performance degradation Polydimethylsiloxane Stretchability Substrates |
title | Double‐Microcrack Coupling Stretchable Neural Electrode for Electrophysiological Communication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A58%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Double%E2%80%90Microcrack%20Coupling%20Stretchable%20Neural%20Electrode%20for%20Electrophysiological%20Communication&rft.jtitle=Advanced%20functional%20materials&rft.au=Yang,%20Dan&rft.date=2023-09-12&rft.volume=33&rft.issue=37&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202300412&rft_dat=%3Cproquest_cross%3E2863990066%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2863990066&rft_id=info:pmid/&rfr_iscdi=true |