Kirchhoff equations with strong singularity in closed manifolds

In this paper, we study a class of Kirchhoff-type problems involving strong singular nonlinearities on compact Riemannian manifolds. With the help of variational method and Nehari method, we prove that this problem has a unique positive solution.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2023-08, Vol.2585 (1), p.12004
Hauptverfasser: Zhan, L L, Chen, N B, Liu, Q H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12004
container_title Journal of physics. Conference series
container_volume 2585
creator Zhan, L L
Chen, N B
Liu, Q H
description In this paper, we study a class of Kirchhoff-type problems involving strong singular nonlinearities on compact Riemannian manifolds. With the help of variational method and Nehari method, we prove that this problem has a unique positive solution.
doi_str_mv 10.1088/1742-6596/2585/1/012004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2863900151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2863900151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2744-7b18beb9009839db061287c18444134ea47a1f81f612aca5dc9c96a56fff5af03</originalsourceid><addsrcrecordid>eNqFkN1KxDAQRoMouK4-gwXvhNpMm7Tplcji_4KCeh3StNlm6TbdpEX27U2prAiCuZkwc-YbOAidA74CzFgEGYnDlOZpFFNGI4gwxBiTAzTbTw73f8aO0Ylza4wT_7IZun7WVta1USqotoPotWld8Kn7OnC9Ne0qcLpdDY2wut8Fug1kY1xVBhvRamWa0p2iIyUaV5191zn6uLt9XzyEy5f7x8XNMpRxRkiYFcCKqsgxzlmSlwVOIWaZBEYIgYRUgmQCFAPl-0IKWspc5qmgqVKKCoWTObqYcjtrtkPler42g239SR6zNPHBQMFT2URJa5yzleKd1RthdxwwH23x0QMfnfDRFgc-2fKbl9OmNt1P9NPr4u03yLtSeTj5A_7vxBdwhHlO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2863900151</pqid></control><display><type>article</type><title>Kirchhoff equations with strong singularity in closed manifolds</title><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhan, L L ; Chen, N B ; Liu, Q H</creator><creatorcontrib>Zhan, L L ; Chen, N B ; Liu, Q H</creatorcontrib><description>In this paper, we study a class of Kirchhoff-type problems involving strong singular nonlinearities on compact Riemannian manifolds. With the help of variational method and Nehari method, we prove that this problem has a unique positive solution.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2585/1/012004</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Physics ; Riemann manifold</subject><ispartof>Journal of physics. Conference series, 2023-08, Vol.2585 (1), p.12004</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2744-7b18beb9009839db061287c18444134ea47a1f81f612aca5dc9c96a56fff5af03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2585/1/012004/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>315,781,785,27929,27930,38873,38895,53845,53872</link.rule.ids></links><search><creatorcontrib>Zhan, L L</creatorcontrib><creatorcontrib>Chen, N B</creatorcontrib><creatorcontrib>Liu, Q H</creatorcontrib><title>Kirchhoff equations with strong singularity in closed manifolds</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>In this paper, we study a class of Kirchhoff-type problems involving strong singular nonlinearities on compact Riemannian manifolds. With the help of variational method and Nehari method, we prove that this problem has a unique positive solution.</description><subject>Physics</subject><subject>Riemann manifold</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkN1KxDAQRoMouK4-gwXvhNpMm7Tplcji_4KCeh3StNlm6TbdpEX27U2prAiCuZkwc-YbOAidA74CzFgEGYnDlOZpFFNGI4gwxBiTAzTbTw73f8aO0Ylza4wT_7IZun7WVta1USqotoPotWld8Kn7OnC9Ne0qcLpdDY2wut8Fug1kY1xVBhvRamWa0p2iIyUaV5191zn6uLt9XzyEy5f7x8XNMpRxRkiYFcCKqsgxzlmSlwVOIWaZBEYIgYRUgmQCFAPl-0IKWspc5qmgqVKKCoWTObqYcjtrtkPler42g239SR6zNPHBQMFT2URJa5yzleKd1RthdxwwH23x0QMfnfDRFgc-2fKbl9OmNt1P9NPr4u03yLtSeTj5A_7vxBdwhHlO</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Zhan, L L</creator><creator>Chen, N B</creator><creator>Liu, Q H</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230801</creationdate><title>Kirchhoff equations with strong singularity in closed manifolds</title><author>Zhan, L L ; Chen, N B ; Liu, Q H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2744-7b18beb9009839db061287c18444134ea47a1f81f612aca5dc9c96a56fff5af03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Physics</topic><topic>Riemann manifold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, L L</creatorcontrib><creatorcontrib>Chen, N B</creatorcontrib><creatorcontrib>Liu, Q H</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhan, L L</au><au>Chen, N B</au><au>Liu, Q H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kirchhoff equations with strong singularity in closed manifolds</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>2585</volume><issue>1</issue><spage>12004</spage><pages>12004-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>In this paper, we study a class of Kirchhoff-type problems involving strong singular nonlinearities on compact Riemannian manifolds. With the help of variational method and Nehari method, we prove that this problem has a unique positive solution.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2585/1/012004</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2023-08, Vol.2585 (1), p.12004
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2863900151
source Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Physics
Riemann manifold
title Kirchhoff equations with strong singularity in closed manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T09%3A05%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kirchhoff%20equations%20with%20strong%20singularity%20in%20closed%20manifolds&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Zhan,%20L%20L&rft.date=2023-08-01&rft.volume=2585&rft.issue=1&rft.spage=12004&rft.pages=12004-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2585/1/012004&rft_dat=%3Cproquest_cross%3E2863900151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2863900151&rft_id=info:pmid/&rfr_iscdi=true