Strategies toward Highly Efficient Monolithic Perovskite/Organic Tandem Solar Cells

Comprehensive Summary Constructing monolithic tandem solar cells (TSCs) is an effective method to break the Shockley–Queisser (S–Q) radiative efficiency limit for single‐junction solar cells. Employing the wide bandgap perovskite materials and low bandgap organic materials as absorber layers for fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of chemistry 2023-07, Vol.41 (14), p.1753-1768
Hauptverfasser: Jiang, Shan, Xu, Zhiyang, Wang, Fuzhi, Tian, Shilei, Wang, Yang, Li, Chenghao, Tan, Zhan'ao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1768
container_issue 14
container_start_page 1753
container_title Chinese journal of chemistry
container_volume 41
creator Jiang, Shan
Xu, Zhiyang
Wang, Fuzhi
Tian, Shilei
Wang, Yang
Li, Chenghao
Tan, Zhan'ao
description Comprehensive Summary Constructing monolithic tandem solar cells (TSCs) is an effective method to break the Shockley–Queisser (S–Q) radiative efficiency limit for single‐junction solar cells. Employing the wide bandgap perovskite materials and low bandgap organic materials as absorber layers for front and rear subcells, respectively, to construct perovskite/organic TSCs can complementarily absorb sunlight in ultraviolet‐visible (UV‐Vis) range by front perovskite and near‐infrared (NIR) range by rear organic molecules, thus reducing the thermalization energy losses. Besides the subcells, the interconnection layer (ICL), which physically and electrically connects the front and rear subcells, is also an important tunnel junction to recombine charges. In this review, we summarize the optimization strategies of wide bandgap perovskites for front subcell, narrow bandgap organic material for rear subcell, and the ICLs employed in monolithic perovskite/organic TSCs. Constructing monolithic tandem solar cells (TSCs) is an effective method to break the Shockley–Queisser (S–Q) radiative efficiency limit for single‐junction solar cells. Here, we summarize the current progresses in monolithic perovskite/organic TSCs. The front subcell based on wide bandgap mixed halide perovskites, rear subcell based on low bandgap organic molecules and the interconnection layer (ICL) are discussed, respectively, which aims to open a pathway to realize highly efficient monolithic perovskite/organic tandem device.
doi_str_mv 10.1002/cjoc.202200796
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2863889493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2863889493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3176-21429929bf61abf32cc60400c69874f518d83d366c2d756f607352ab148d1c0b3</originalsourceid><addsrcrecordid>eNqFkEFLAzEQRoMoWKtXzwuet50k22RzlKVapVKhFbyFbDZpU7ebmmwt_fduqejR0wzD-2aGh9AthgEGIEO99npAgBAALtgZ6mGGs5QDG513PQBOGWTvl-gqxnXHc05YD83nbVCtWToTk9bvVaiSiVuu6kMyttZpZ5o2efGNr127cjp5NcF_xQ_XmuEsLFXTjRaqqcwmmftahaQwdR2v0YVVdTQ3P7WP3h7Gi2KSTmePT8X9NNUUc5YSnBEhiCgtw6q0lGjdPQigmch5Zkc4r3JaUcY0qfiIWQacjogqcZZXWENJ--jutHcb_OfOxFau_S403UlJckbzXGSCdtTgROngYwzGym1wGxUOEoM8ipNHcfJXXBcQp8De1ebwDy2L51nxl_0GoP5xQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2863889493</pqid></control><display><type>article</type><title>Strategies toward Highly Efficient Monolithic Perovskite/Organic Tandem Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jiang, Shan ; Xu, Zhiyang ; Wang, Fuzhi ; Tian, Shilei ; Wang, Yang ; Li, Chenghao ; Tan, Zhan'ao</creator><creatorcontrib>Jiang, Shan ; Xu, Zhiyang ; Wang, Fuzhi ; Tian, Shilei ; Wang, Yang ; Li, Chenghao ; Tan, Zhan'ao</creatorcontrib><description>Comprehensive Summary Constructing monolithic tandem solar cells (TSCs) is an effective method to break the Shockley–Queisser (S–Q) radiative efficiency limit for single‐junction solar cells. Employing the wide bandgap perovskite materials and low bandgap organic materials as absorber layers for front and rear subcells, respectively, to construct perovskite/organic TSCs can complementarily absorb sunlight in ultraviolet‐visible (UV‐Vis) range by front perovskite and near‐infrared (NIR) range by rear organic molecules, thus reducing the thermalization energy losses. Besides the subcells, the interconnection layer (ICL), which physically and electrically connects the front and rear subcells, is also an important tunnel junction to recombine charges. In this review, we summarize the optimization strategies of wide bandgap perovskites for front subcell, narrow bandgap organic material for rear subcell, and the ICLs employed in monolithic perovskite/organic TSCs. Constructing monolithic tandem solar cells (TSCs) is an effective method to break the Shockley–Queisser (S–Q) radiative efficiency limit for single‐junction solar cells. Here, we summarize the current progresses in monolithic perovskite/organic TSCs. The front subcell based on wide bandgap mixed halide perovskites, rear subcell based on low bandgap organic molecules and the interconnection layer (ICL) are discussed, respectively, which aims to open a pathway to realize highly efficient monolithic perovskite/organic tandem device.</description><identifier>ISSN: 1001-604X</identifier><identifier>EISSN: 1614-7065</identifier><identifier>DOI: 10.1002/cjoc.202200796</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>Efficiency ; Energy gap ; Interconnection layer ; Low bandgap organic molecule ; Open‐circuit voltage ; Optimization ; Organic chemistry ; Organic materials ; Perovskite solar cells ; Perovskites ; Photovoltaic cells ; Solar cells ; Subcells ; Tandem solar cells ; Thermalization (energy absorption) ; Tunnel junctions ; Wide bandgap perovskite</subject><ispartof>Chinese journal of chemistry, 2023-07, Vol.41 (14), p.1753-1768</ispartof><rights>2023 SIOC, CAS, Shanghai, &amp; WILEY‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3176-21429929bf61abf32cc60400c69874f518d83d366c2d756f607352ab148d1c0b3</citedby><cites>FETCH-LOGICAL-c3176-21429929bf61abf32cc60400c69874f518d83d366c2d756f607352ab148d1c0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcjoc.202200796$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcjoc.202200796$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Jiang, Shan</creatorcontrib><creatorcontrib>Xu, Zhiyang</creatorcontrib><creatorcontrib>Wang, Fuzhi</creatorcontrib><creatorcontrib>Tian, Shilei</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Li, Chenghao</creatorcontrib><creatorcontrib>Tan, Zhan'ao</creatorcontrib><title>Strategies toward Highly Efficient Monolithic Perovskite/Organic Tandem Solar Cells</title><title>Chinese journal of chemistry</title><description>Comprehensive Summary Constructing monolithic tandem solar cells (TSCs) is an effective method to break the Shockley–Queisser (S–Q) radiative efficiency limit for single‐junction solar cells. Employing the wide bandgap perovskite materials and low bandgap organic materials as absorber layers for front and rear subcells, respectively, to construct perovskite/organic TSCs can complementarily absorb sunlight in ultraviolet‐visible (UV‐Vis) range by front perovskite and near‐infrared (NIR) range by rear organic molecules, thus reducing the thermalization energy losses. Besides the subcells, the interconnection layer (ICL), which physically and electrically connects the front and rear subcells, is also an important tunnel junction to recombine charges. In this review, we summarize the optimization strategies of wide bandgap perovskites for front subcell, narrow bandgap organic material for rear subcell, and the ICLs employed in monolithic perovskite/organic TSCs. Constructing monolithic tandem solar cells (TSCs) is an effective method to break the Shockley–Queisser (S–Q) radiative efficiency limit for single‐junction solar cells. Here, we summarize the current progresses in monolithic perovskite/organic TSCs. The front subcell based on wide bandgap mixed halide perovskites, rear subcell based on low bandgap organic molecules and the interconnection layer (ICL) are discussed, respectively, which aims to open a pathway to realize highly efficient monolithic perovskite/organic tandem device.</description><subject>Efficiency</subject><subject>Energy gap</subject><subject>Interconnection layer</subject><subject>Low bandgap organic molecule</subject><subject>Open‐circuit voltage</subject><subject>Optimization</subject><subject>Organic chemistry</subject><subject>Organic materials</subject><subject>Perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Subcells</subject><subject>Tandem solar cells</subject><subject>Thermalization (energy absorption)</subject><subject>Tunnel junctions</subject><subject>Wide bandgap perovskite</subject><issn>1001-604X</issn><issn>1614-7065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQRoMoWKtXzwuet50k22RzlKVapVKhFbyFbDZpU7ebmmwt_fduqejR0wzD-2aGh9AthgEGIEO99npAgBAALtgZ6mGGs5QDG513PQBOGWTvl-gqxnXHc05YD83nbVCtWToTk9bvVaiSiVuu6kMyttZpZ5o2efGNr127cjp5NcF_xQ_XmuEsLFXTjRaqqcwmmftahaQwdR2v0YVVdTQ3P7WP3h7Gi2KSTmePT8X9NNUUc5YSnBEhiCgtw6q0lGjdPQigmch5Zkc4r3JaUcY0qfiIWQacjogqcZZXWENJ--jutHcb_OfOxFau_S403UlJckbzXGSCdtTgROngYwzGym1wGxUOEoM8ipNHcfJXXBcQp8De1ebwDy2L51nxl_0GoP5xQQ</recordid><startdate>20230715</startdate><enddate>20230715</enddate><creator>Jiang, Shan</creator><creator>Xu, Zhiyang</creator><creator>Wang, Fuzhi</creator><creator>Tian, Shilei</creator><creator>Wang, Yang</creator><creator>Li, Chenghao</creator><creator>Tan, Zhan'ao</creator><general>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230715</creationdate><title>Strategies toward Highly Efficient Monolithic Perovskite/Organic Tandem Solar Cells</title><author>Jiang, Shan ; Xu, Zhiyang ; Wang, Fuzhi ; Tian, Shilei ; Wang, Yang ; Li, Chenghao ; Tan, Zhan'ao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3176-21429929bf61abf32cc60400c69874f518d83d366c2d756f607352ab148d1c0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Efficiency</topic><topic>Energy gap</topic><topic>Interconnection layer</topic><topic>Low bandgap organic molecule</topic><topic>Open‐circuit voltage</topic><topic>Optimization</topic><topic>Organic chemistry</topic><topic>Organic materials</topic><topic>Perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Subcells</topic><topic>Tandem solar cells</topic><topic>Thermalization (energy absorption)</topic><topic>Tunnel junctions</topic><topic>Wide bandgap perovskite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Shan</creatorcontrib><creatorcontrib>Xu, Zhiyang</creatorcontrib><creatorcontrib>Wang, Fuzhi</creatorcontrib><creatorcontrib>Tian, Shilei</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Li, Chenghao</creatorcontrib><creatorcontrib>Tan, Zhan'ao</creatorcontrib><collection>CrossRef</collection><jtitle>Chinese journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Shan</au><au>Xu, Zhiyang</au><au>Wang, Fuzhi</au><au>Tian, Shilei</au><au>Wang, Yang</au><au>Li, Chenghao</au><au>Tan, Zhan'ao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategies toward Highly Efficient Monolithic Perovskite/Organic Tandem Solar Cells</atitle><jtitle>Chinese journal of chemistry</jtitle><date>2023-07-15</date><risdate>2023</risdate><volume>41</volume><issue>14</issue><spage>1753</spage><epage>1768</epage><pages>1753-1768</pages><issn>1001-604X</issn><eissn>1614-7065</eissn><abstract>Comprehensive Summary Constructing monolithic tandem solar cells (TSCs) is an effective method to break the Shockley–Queisser (S–Q) radiative efficiency limit for single‐junction solar cells. Employing the wide bandgap perovskite materials and low bandgap organic materials as absorber layers for front and rear subcells, respectively, to construct perovskite/organic TSCs can complementarily absorb sunlight in ultraviolet‐visible (UV‐Vis) range by front perovskite and near‐infrared (NIR) range by rear organic molecules, thus reducing the thermalization energy losses. Besides the subcells, the interconnection layer (ICL), which physically and electrically connects the front and rear subcells, is also an important tunnel junction to recombine charges. In this review, we summarize the optimization strategies of wide bandgap perovskites for front subcell, narrow bandgap organic material for rear subcell, and the ICLs employed in monolithic perovskite/organic TSCs. Constructing monolithic tandem solar cells (TSCs) is an effective method to break the Shockley–Queisser (S–Q) radiative efficiency limit for single‐junction solar cells. Here, we summarize the current progresses in monolithic perovskite/organic TSCs. The front subcell based on wide bandgap mixed halide perovskites, rear subcell based on low bandgap organic molecules and the interconnection layer (ICL) are discussed, respectively, which aims to open a pathway to realize highly efficient monolithic perovskite/organic tandem device.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</pub><doi>10.1002/cjoc.202200796</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1001-604X
ispartof Chinese journal of chemistry, 2023-07, Vol.41 (14), p.1753-1768
issn 1001-604X
1614-7065
language eng
recordid cdi_proquest_journals_2863889493
source Wiley Online Library Journals Frontfile Complete
subjects Efficiency
Energy gap
Interconnection layer
Low bandgap organic molecule
Open‐circuit voltage
Optimization
Organic chemistry
Organic materials
Perovskite solar cells
Perovskites
Photovoltaic cells
Solar cells
Subcells
Tandem solar cells
Thermalization (energy absorption)
Tunnel junctions
Wide bandgap perovskite
title Strategies toward Highly Efficient Monolithic Perovskite/Organic Tandem Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A21%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategies%20toward%20Highly%20Efficient%20Monolithic%20Perovskite/Organic%20Tandem%20Solar%20Cells&rft.jtitle=Chinese%20journal%20of%20chemistry&rft.au=Jiang,%20Shan&rft.date=2023-07-15&rft.volume=41&rft.issue=14&rft.spage=1753&rft.epage=1768&rft.pages=1753-1768&rft.issn=1001-604X&rft.eissn=1614-7065&rft_id=info:doi/10.1002/cjoc.202200796&rft_dat=%3Cproquest_cross%3E2863889493%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2863889493&rft_id=info:pmid/&rfr_iscdi=true