Strategies toward Highly Efficient Monolithic Perovskite/Organic Tandem Solar Cells
Comprehensive Summary Constructing monolithic tandem solar cells (TSCs) is an effective method to break the Shockley–Queisser (S–Q) radiative efficiency limit for single‐junction solar cells. Employing the wide bandgap perovskite materials and low bandgap organic materials as absorber layers for fro...
Gespeichert in:
Veröffentlicht in: | Chinese journal of chemistry 2023-07, Vol.41 (14), p.1753-1768 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1768 |
---|---|
container_issue | 14 |
container_start_page | 1753 |
container_title | Chinese journal of chemistry |
container_volume | 41 |
creator | Jiang, Shan Xu, Zhiyang Wang, Fuzhi Tian, Shilei Wang, Yang Li, Chenghao Tan, Zhan'ao |
description | Comprehensive Summary
Constructing monolithic tandem solar cells (TSCs) is an effective method to break the Shockley–Queisser (S–Q) radiative efficiency limit for single‐junction solar cells. Employing the wide bandgap perovskite materials and low bandgap organic materials as absorber layers for front and rear subcells, respectively, to construct perovskite/organic TSCs can complementarily absorb sunlight in ultraviolet‐visible (UV‐Vis) range by front perovskite and near‐infrared (NIR) range by rear organic molecules, thus reducing the thermalization energy losses. Besides the subcells, the interconnection layer (ICL), which physically and electrically connects the front and rear subcells, is also an important tunnel junction to recombine charges. In this review, we summarize the optimization strategies of wide bandgap perovskites for front subcell, narrow bandgap organic material for rear subcell, and the ICLs employed in monolithic perovskite/organic TSCs.
Constructing monolithic tandem solar cells (TSCs) is an effective method to break the Shockley–Queisser (S–Q) radiative efficiency limit for single‐junction solar cells. Here, we summarize the current progresses in monolithic perovskite/organic TSCs. The front subcell based on wide bandgap mixed halide perovskites, rear subcell based on low bandgap organic molecules and the interconnection layer (ICL) are discussed, respectively, which aims to open a pathway to realize highly efficient monolithic perovskite/organic tandem device. |
doi_str_mv | 10.1002/cjoc.202200796 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2863889493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2863889493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3176-21429929bf61abf32cc60400c69874f518d83d366c2d756f607352ab148d1c0b3</originalsourceid><addsrcrecordid>eNqFkEFLAzEQRoMoWKtXzwuet50k22RzlKVapVKhFbyFbDZpU7ebmmwt_fduqejR0wzD-2aGh9AthgEGIEO99npAgBAALtgZ6mGGs5QDG513PQBOGWTvl-gqxnXHc05YD83nbVCtWToTk9bvVaiSiVuu6kMyttZpZ5o2efGNr127cjp5NcF_xQ_XmuEsLFXTjRaqqcwmmftahaQwdR2v0YVVdTQ3P7WP3h7Gi2KSTmePT8X9NNUUc5YSnBEhiCgtw6q0lGjdPQigmch5Zkc4r3JaUcY0qfiIWQacjogqcZZXWENJ--jutHcb_OfOxFau_S403UlJckbzXGSCdtTgROngYwzGym1wGxUOEoM8ipNHcfJXXBcQp8De1ebwDy2L51nxl_0GoP5xQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2863889493</pqid></control><display><type>article</type><title>Strategies toward Highly Efficient Monolithic Perovskite/Organic Tandem Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jiang, Shan ; Xu, Zhiyang ; Wang, Fuzhi ; Tian, Shilei ; Wang, Yang ; Li, Chenghao ; Tan, Zhan'ao</creator><creatorcontrib>Jiang, Shan ; Xu, Zhiyang ; Wang, Fuzhi ; Tian, Shilei ; Wang, Yang ; Li, Chenghao ; Tan, Zhan'ao</creatorcontrib><description>Comprehensive Summary
Constructing monolithic tandem solar cells (TSCs) is an effective method to break the Shockley–Queisser (S–Q) radiative efficiency limit for single‐junction solar cells. Employing the wide bandgap perovskite materials and low bandgap organic materials as absorber layers for front and rear subcells, respectively, to construct perovskite/organic TSCs can complementarily absorb sunlight in ultraviolet‐visible (UV‐Vis) range by front perovskite and near‐infrared (NIR) range by rear organic molecules, thus reducing the thermalization energy losses. Besides the subcells, the interconnection layer (ICL), which physically and electrically connects the front and rear subcells, is also an important tunnel junction to recombine charges. In this review, we summarize the optimization strategies of wide bandgap perovskites for front subcell, narrow bandgap organic material for rear subcell, and the ICLs employed in monolithic perovskite/organic TSCs.
Constructing monolithic tandem solar cells (TSCs) is an effective method to break the Shockley–Queisser (S–Q) radiative efficiency limit for single‐junction solar cells. Here, we summarize the current progresses in monolithic perovskite/organic TSCs. The front subcell based on wide bandgap mixed halide perovskites, rear subcell based on low bandgap organic molecules and the interconnection layer (ICL) are discussed, respectively, which aims to open a pathway to realize highly efficient monolithic perovskite/organic tandem device.</description><identifier>ISSN: 1001-604X</identifier><identifier>EISSN: 1614-7065</identifier><identifier>DOI: 10.1002/cjoc.202200796</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH & Co. KGaA</publisher><subject>Efficiency ; Energy gap ; Interconnection layer ; Low bandgap organic molecule ; Open‐circuit voltage ; Optimization ; Organic chemistry ; Organic materials ; Perovskite solar cells ; Perovskites ; Photovoltaic cells ; Solar cells ; Subcells ; Tandem solar cells ; Thermalization (energy absorption) ; Tunnel junctions ; Wide bandgap perovskite</subject><ispartof>Chinese journal of chemistry, 2023-07, Vol.41 (14), p.1753-1768</ispartof><rights>2023 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3176-21429929bf61abf32cc60400c69874f518d83d366c2d756f607352ab148d1c0b3</citedby><cites>FETCH-LOGICAL-c3176-21429929bf61abf32cc60400c69874f518d83d366c2d756f607352ab148d1c0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcjoc.202200796$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcjoc.202200796$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Jiang, Shan</creatorcontrib><creatorcontrib>Xu, Zhiyang</creatorcontrib><creatorcontrib>Wang, Fuzhi</creatorcontrib><creatorcontrib>Tian, Shilei</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Li, Chenghao</creatorcontrib><creatorcontrib>Tan, Zhan'ao</creatorcontrib><title>Strategies toward Highly Efficient Monolithic Perovskite/Organic Tandem Solar Cells</title><title>Chinese journal of chemistry</title><description>Comprehensive Summary
Constructing monolithic tandem solar cells (TSCs) is an effective method to break the Shockley–Queisser (S–Q) radiative efficiency limit for single‐junction solar cells. Employing the wide bandgap perovskite materials and low bandgap organic materials as absorber layers for front and rear subcells, respectively, to construct perovskite/organic TSCs can complementarily absorb sunlight in ultraviolet‐visible (UV‐Vis) range by front perovskite and near‐infrared (NIR) range by rear organic molecules, thus reducing the thermalization energy losses. Besides the subcells, the interconnection layer (ICL), which physically and electrically connects the front and rear subcells, is also an important tunnel junction to recombine charges. In this review, we summarize the optimization strategies of wide bandgap perovskites for front subcell, narrow bandgap organic material for rear subcell, and the ICLs employed in monolithic perovskite/organic TSCs.
Constructing monolithic tandem solar cells (TSCs) is an effective method to break the Shockley–Queisser (S–Q) radiative efficiency limit for single‐junction solar cells. Here, we summarize the current progresses in monolithic perovskite/organic TSCs. The front subcell based on wide bandgap mixed halide perovskites, rear subcell based on low bandgap organic molecules and the interconnection layer (ICL) are discussed, respectively, which aims to open a pathway to realize highly efficient monolithic perovskite/organic tandem device.</description><subject>Efficiency</subject><subject>Energy gap</subject><subject>Interconnection layer</subject><subject>Low bandgap organic molecule</subject><subject>Open‐circuit voltage</subject><subject>Optimization</subject><subject>Organic chemistry</subject><subject>Organic materials</subject><subject>Perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Subcells</subject><subject>Tandem solar cells</subject><subject>Thermalization (energy absorption)</subject><subject>Tunnel junctions</subject><subject>Wide bandgap perovskite</subject><issn>1001-604X</issn><issn>1614-7065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQRoMoWKtXzwuet50k22RzlKVapVKhFbyFbDZpU7ebmmwt_fduqejR0wzD-2aGh9AthgEGIEO99npAgBAALtgZ6mGGs5QDG513PQBOGWTvl-gqxnXHc05YD83nbVCtWToTk9bvVaiSiVuu6kMyttZpZ5o2efGNr127cjp5NcF_xQ_XmuEsLFXTjRaqqcwmmftahaQwdR2v0YVVdTQ3P7WP3h7Gi2KSTmePT8X9NNUUc5YSnBEhiCgtw6q0lGjdPQigmch5Zkc4r3JaUcY0qfiIWQacjogqcZZXWENJ--jutHcb_OfOxFau_S403UlJckbzXGSCdtTgROngYwzGym1wGxUOEoM8ipNHcfJXXBcQp8De1ebwDy2L51nxl_0GoP5xQQ</recordid><startdate>20230715</startdate><enddate>20230715</enddate><creator>Jiang, Shan</creator><creator>Xu, Zhiyang</creator><creator>Wang, Fuzhi</creator><creator>Tian, Shilei</creator><creator>Wang, Yang</creator><creator>Li, Chenghao</creator><creator>Tan, Zhan'ao</creator><general>WILEY‐VCH Verlag GmbH & Co. KGaA</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230715</creationdate><title>Strategies toward Highly Efficient Monolithic Perovskite/Organic Tandem Solar Cells</title><author>Jiang, Shan ; Xu, Zhiyang ; Wang, Fuzhi ; Tian, Shilei ; Wang, Yang ; Li, Chenghao ; Tan, Zhan'ao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3176-21429929bf61abf32cc60400c69874f518d83d366c2d756f607352ab148d1c0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Efficiency</topic><topic>Energy gap</topic><topic>Interconnection layer</topic><topic>Low bandgap organic molecule</topic><topic>Open‐circuit voltage</topic><topic>Optimization</topic><topic>Organic chemistry</topic><topic>Organic materials</topic><topic>Perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Subcells</topic><topic>Tandem solar cells</topic><topic>Thermalization (energy absorption)</topic><topic>Tunnel junctions</topic><topic>Wide bandgap perovskite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Shan</creatorcontrib><creatorcontrib>Xu, Zhiyang</creatorcontrib><creatorcontrib>Wang, Fuzhi</creatorcontrib><creatorcontrib>Tian, Shilei</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Li, Chenghao</creatorcontrib><creatorcontrib>Tan, Zhan'ao</creatorcontrib><collection>CrossRef</collection><jtitle>Chinese journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Shan</au><au>Xu, Zhiyang</au><au>Wang, Fuzhi</au><au>Tian, Shilei</au><au>Wang, Yang</au><au>Li, Chenghao</au><au>Tan, Zhan'ao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategies toward Highly Efficient Monolithic Perovskite/Organic Tandem Solar Cells</atitle><jtitle>Chinese journal of chemistry</jtitle><date>2023-07-15</date><risdate>2023</risdate><volume>41</volume><issue>14</issue><spage>1753</spage><epage>1768</epage><pages>1753-1768</pages><issn>1001-604X</issn><eissn>1614-7065</eissn><abstract>Comprehensive Summary
Constructing monolithic tandem solar cells (TSCs) is an effective method to break the Shockley–Queisser (S–Q) radiative efficiency limit for single‐junction solar cells. Employing the wide bandgap perovskite materials and low bandgap organic materials as absorber layers for front and rear subcells, respectively, to construct perovskite/organic TSCs can complementarily absorb sunlight in ultraviolet‐visible (UV‐Vis) range by front perovskite and near‐infrared (NIR) range by rear organic molecules, thus reducing the thermalization energy losses. Besides the subcells, the interconnection layer (ICL), which physically and electrically connects the front and rear subcells, is also an important tunnel junction to recombine charges. In this review, we summarize the optimization strategies of wide bandgap perovskites for front subcell, narrow bandgap organic material for rear subcell, and the ICLs employed in monolithic perovskite/organic TSCs.
Constructing monolithic tandem solar cells (TSCs) is an effective method to break the Shockley–Queisser (S–Q) radiative efficiency limit for single‐junction solar cells. Here, we summarize the current progresses in monolithic perovskite/organic TSCs. The front subcell based on wide bandgap mixed halide perovskites, rear subcell based on low bandgap organic molecules and the interconnection layer (ICL) are discussed, respectively, which aims to open a pathway to realize highly efficient monolithic perovskite/organic tandem device.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH & Co. KGaA</pub><doi>10.1002/cjoc.202200796</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-604X |
ispartof | Chinese journal of chemistry, 2023-07, Vol.41 (14), p.1753-1768 |
issn | 1001-604X 1614-7065 |
language | eng |
recordid | cdi_proquest_journals_2863889493 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Efficiency Energy gap Interconnection layer Low bandgap organic molecule Open‐circuit voltage Optimization Organic chemistry Organic materials Perovskite solar cells Perovskites Photovoltaic cells Solar cells Subcells Tandem solar cells Thermalization (energy absorption) Tunnel junctions Wide bandgap perovskite |
title | Strategies toward Highly Efficient Monolithic Perovskite/Organic Tandem Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A21%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategies%20toward%20Highly%20Efficient%20Monolithic%20Perovskite/Organic%20Tandem%20Solar%20Cells&rft.jtitle=Chinese%20journal%20of%20chemistry&rft.au=Jiang,%20Shan&rft.date=2023-07-15&rft.volume=41&rft.issue=14&rft.spage=1753&rft.epage=1768&rft.pages=1753-1768&rft.issn=1001-604X&rft.eissn=1614-7065&rft_id=info:doi/10.1002/cjoc.202200796&rft_dat=%3Cproquest_cross%3E2863889493%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2863889493&rft_id=info:pmid/&rfr_iscdi=true |