Effect of cone rotation on the nonlinear evolution of Mack modes in supersonic boundary layers

In this paper, we present a systematic study of the nonlinear evolution of the travelling Mack modes in a Mach 3 supersonic boundary layer over a rotating cone with a $7^{\circ }$ half-apex angle using the nonlinear parabolic stability equation (NPSE). To quantify the effect of cone rotation, six ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2023-09, Vol.971, Article A4
Hauptverfasser: Song, Runjie, Dong, Ming, Zhao, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 971
creator Song, Runjie
Dong, Ming
Zhao, Lei
description In this paper, we present a systematic study of the nonlinear evolution of the travelling Mack modes in a Mach 3 supersonic boundary layer over a rotating cone with a $7^{\circ }$ half-apex angle using the nonlinear parabolic stability equation (NPSE). To quantify the effect of cone rotation, six cases with different rotation rates are considered, and from the same streamwise position, a pair of oblique Mack modes with the same frequency but opposite circumferential wavenumbers are introduced as the initial perturbations for NPSE calculations. As the angular rotation rate $\varOmega$ increases such that $\bar \varOmega$ (defined as the ratio of the rotation speed of the cone to the streamwise velocity at the boundary-layer edge) varies from 0 to $O(1)$, three distinguished nonlinear regimes appear, namely the oblique-mode breakdown, the generalised fundamental resonance and the centrifugal-instability-induced transition. For each regime, the mechanisms for the amplifications of the streak mode and the harmonic travelling waves are explained in detail, and the dominant role of the streak mode in triggering the breakdown of the laminar flow is particularly highlighted. Additionally, from the linear stability theory, the dominant travelling mode undergoes the greatest amplification for a moderate $\varOmega$, which, according to the $e^N$ transition-prediction method, indicates premature transition to turbulence. However, this is in contrast to the NPSE results, in which a delay of the transition onset is observed for a moderate $\varOmega$. Such a disagreement is attributed to the different nonlinear regimes appearing for different rotation rates. Therefore, the traditional transition-prediction method based on the linear instability should be carefully employed if multiple nonlinear regimes may appear.
doi_str_mv 10.1017/jfm.2023.629
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2863709969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2023_629</cupid><sourcerecordid>2863709969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-ce7f3dfe0ef63961b0e33fc786b1f2c09b11fc49628501647c888073d7cc1a9f3</originalsourceid><addsrcrecordid>eNptkEtLxDAQgIMouK7e_AEBr7ZOkm7SHGVZH7DiRa-GNE20a5usSSvsvzfLCl6EgYGZbx58CF0SKAkQcbNxQ0mBspJTeYRmpOKyELxaHKMZAKUFIRRO0VlKGwDCQIoZels5Z82Ig8MmeItjGPXYBY9zjB8W--D7zlsdsf0O_XRoOfykzSceQmsT7jxO09bGFHxncBMm3-q4w73e5do5OnG6T_biN8_R693qZflQrJ_vH5e368IwoGNhrHCsdRas40xy0oBlzBlR84Y4akA2hDhTSU7rBRBeCVPXNQjWCmOIlo7N0dVh7zaGr8mmUW3CFH0-qWjNmQApuczU9YEyMaQUrVPb2A35W0VA7Q2qbFDtDapsMOPlL66HJnbtu_3b-u_AD4-8c7U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2863709969</pqid></control><display><type>article</type><title>Effect of cone rotation on the nonlinear evolution of Mack modes in supersonic boundary layers</title><source>Cambridge University Press Journals Complete</source><creator>Song, Runjie ; Dong, Ming ; Zhao, Lei</creator><creatorcontrib>Song, Runjie ; Dong, Ming ; Zhao, Lei</creatorcontrib><description>In this paper, we present a systematic study of the nonlinear evolution of the travelling Mack modes in a Mach 3 supersonic boundary layer over a rotating cone with a $7^{\circ }$ half-apex angle using the nonlinear parabolic stability equation (NPSE). To quantify the effect of cone rotation, six cases with different rotation rates are considered, and from the same streamwise position, a pair of oblique Mack modes with the same frequency but opposite circumferential wavenumbers are introduced as the initial perturbations for NPSE calculations. As the angular rotation rate $\varOmega$ increases such that $\bar \varOmega$ (defined as the ratio of the rotation speed of the cone to the streamwise velocity at the boundary-layer edge) varies from 0 to $O(1)$, three distinguished nonlinear regimes appear, namely the oblique-mode breakdown, the generalised fundamental resonance and the centrifugal-instability-induced transition. For each regime, the mechanisms for the amplifications of the streak mode and the harmonic travelling waves are explained in detail, and the dominant role of the streak mode in triggering the breakdown of the laminar flow is particularly highlighted. Additionally, from the linear stability theory, the dominant travelling mode undergoes the greatest amplification for a moderate $\varOmega$, which, according to the $e^N$ transition-prediction method, indicates premature transition to turbulence. However, this is in contrast to the NPSE results, in which a delay of the transition onset is observed for a moderate $\varOmega$. Such a disagreement is attributed to the different nonlinear regimes appearing for different rotation rates. Therefore, the traditional transition-prediction method based on the linear instability should be carefully employed if multiple nonlinear regimes may appear.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2023.629</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Amplification ; Apex angle ; Boundary layers ; Breakdown ; Evolution ; Flow control ; Flow stability ; Flow velocity ; Fluid mechanics ; JFM Papers ; Laminar flow ; Modes ; Numerical analysis ; Perturbation ; Rotation ; Supersonic boundary layers ; Traveling waves ; Turbulence</subject><ispartof>Journal of fluid mechanics, 2023-09, Vol.971, Article A4</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-ce7f3dfe0ef63961b0e33fc786b1f2c09b11fc49628501647c888073d7cc1a9f3</citedby><cites>FETCH-LOGICAL-c302t-ce7f3dfe0ef63961b0e33fc786b1f2c09b11fc49628501647c888073d7cc1a9f3</cites><orcidid>0000-0003-3408-8613 ; 0000-0003-1732-395X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112023006298/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Song, Runjie</creatorcontrib><creatorcontrib>Dong, Ming</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><title>Effect of cone rotation on the nonlinear evolution of Mack modes in supersonic boundary layers</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>In this paper, we present a systematic study of the nonlinear evolution of the travelling Mack modes in a Mach 3 supersonic boundary layer over a rotating cone with a $7^{\circ }$ half-apex angle using the nonlinear parabolic stability equation (NPSE). To quantify the effect of cone rotation, six cases with different rotation rates are considered, and from the same streamwise position, a pair of oblique Mack modes with the same frequency but opposite circumferential wavenumbers are introduced as the initial perturbations for NPSE calculations. As the angular rotation rate $\varOmega$ increases such that $\bar \varOmega$ (defined as the ratio of the rotation speed of the cone to the streamwise velocity at the boundary-layer edge) varies from 0 to $O(1)$, three distinguished nonlinear regimes appear, namely the oblique-mode breakdown, the generalised fundamental resonance and the centrifugal-instability-induced transition. For each regime, the mechanisms for the amplifications of the streak mode and the harmonic travelling waves are explained in detail, and the dominant role of the streak mode in triggering the breakdown of the laminar flow is particularly highlighted. Additionally, from the linear stability theory, the dominant travelling mode undergoes the greatest amplification for a moderate $\varOmega$, which, according to the $e^N$ transition-prediction method, indicates premature transition to turbulence. However, this is in contrast to the NPSE results, in which a delay of the transition onset is observed for a moderate $\varOmega$. Such a disagreement is attributed to the different nonlinear regimes appearing for different rotation rates. Therefore, the traditional transition-prediction method based on the linear instability should be carefully employed if multiple nonlinear regimes may appear.</description><subject>Amplification</subject><subject>Apex angle</subject><subject>Boundary layers</subject><subject>Breakdown</subject><subject>Evolution</subject><subject>Flow control</subject><subject>Flow stability</subject><subject>Flow velocity</subject><subject>Fluid mechanics</subject><subject>JFM Papers</subject><subject>Laminar flow</subject><subject>Modes</subject><subject>Numerical analysis</subject><subject>Perturbation</subject><subject>Rotation</subject><subject>Supersonic boundary layers</subject><subject>Traveling waves</subject><subject>Turbulence</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkEtLxDAQgIMouK7e_AEBr7ZOkm7SHGVZH7DiRa-GNE20a5usSSvsvzfLCl6EgYGZbx58CF0SKAkQcbNxQ0mBspJTeYRmpOKyELxaHKMZAKUFIRRO0VlKGwDCQIoZels5Z82Ig8MmeItjGPXYBY9zjB8W--D7zlsdsf0O_XRoOfykzSceQmsT7jxO09bGFHxncBMm3-q4w73e5do5OnG6T_biN8_R693qZflQrJ_vH5e368IwoGNhrHCsdRas40xy0oBlzBlR84Y4akA2hDhTSU7rBRBeCVPXNQjWCmOIlo7N0dVh7zaGr8mmUW3CFH0-qWjNmQApuczU9YEyMaQUrVPb2A35W0VA7Q2qbFDtDapsMOPlL66HJnbtu_3b-u_AD4-8c7U</recordid><startdate>20230912</startdate><enddate>20230912</enddate><creator>Song, Runjie</creator><creator>Dong, Ming</creator><creator>Zhao, Lei</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-3408-8613</orcidid><orcidid>https://orcid.org/0000-0003-1732-395X</orcidid></search><sort><creationdate>20230912</creationdate><title>Effect of cone rotation on the nonlinear evolution of Mack modes in supersonic boundary layers</title><author>Song, Runjie ; Dong, Ming ; Zhao, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-ce7f3dfe0ef63961b0e33fc786b1f2c09b11fc49628501647c888073d7cc1a9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amplification</topic><topic>Apex angle</topic><topic>Boundary layers</topic><topic>Breakdown</topic><topic>Evolution</topic><topic>Flow control</topic><topic>Flow stability</topic><topic>Flow velocity</topic><topic>Fluid mechanics</topic><topic>JFM Papers</topic><topic>Laminar flow</topic><topic>Modes</topic><topic>Numerical analysis</topic><topic>Perturbation</topic><topic>Rotation</topic><topic>Supersonic boundary layers</topic><topic>Traveling waves</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Runjie</creatorcontrib><creatorcontrib>Dong, Ming</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Runjie</au><au>Dong, Ming</au><au>Zhao, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of cone rotation on the nonlinear evolution of Mack modes in supersonic boundary layers</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2023-09-12</date><risdate>2023</risdate><volume>971</volume><artnum>A4</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>In this paper, we present a systematic study of the nonlinear evolution of the travelling Mack modes in a Mach 3 supersonic boundary layer over a rotating cone with a $7^{\circ }$ half-apex angle using the nonlinear parabolic stability equation (NPSE). To quantify the effect of cone rotation, six cases with different rotation rates are considered, and from the same streamwise position, a pair of oblique Mack modes with the same frequency but opposite circumferential wavenumbers are introduced as the initial perturbations for NPSE calculations. As the angular rotation rate $\varOmega$ increases such that $\bar \varOmega$ (defined as the ratio of the rotation speed of the cone to the streamwise velocity at the boundary-layer edge) varies from 0 to $O(1)$, three distinguished nonlinear regimes appear, namely the oblique-mode breakdown, the generalised fundamental resonance and the centrifugal-instability-induced transition. For each regime, the mechanisms for the amplifications of the streak mode and the harmonic travelling waves are explained in detail, and the dominant role of the streak mode in triggering the breakdown of the laminar flow is particularly highlighted. Additionally, from the linear stability theory, the dominant travelling mode undergoes the greatest amplification for a moderate $\varOmega$, which, according to the $e^N$ transition-prediction method, indicates premature transition to turbulence. However, this is in contrast to the NPSE results, in which a delay of the transition onset is observed for a moderate $\varOmega$. Such a disagreement is attributed to the different nonlinear regimes appearing for different rotation rates. Therefore, the traditional transition-prediction method based on the linear instability should be carefully employed if multiple nonlinear regimes may appear.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2023.629</doi><tpages>48</tpages><orcidid>https://orcid.org/0000-0003-3408-8613</orcidid><orcidid>https://orcid.org/0000-0003-1732-395X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2023-09, Vol.971, Article A4
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2863709969
source Cambridge University Press Journals Complete
subjects Amplification
Apex angle
Boundary layers
Breakdown
Evolution
Flow control
Flow stability
Flow velocity
Fluid mechanics
JFM Papers
Laminar flow
Modes
Numerical analysis
Perturbation
Rotation
Supersonic boundary layers
Traveling waves
Turbulence
title Effect of cone rotation on the nonlinear evolution of Mack modes in supersonic boundary layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A46%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20cone%20rotation%20on%20the%20nonlinear%20evolution%20of%20Mack%20modes%20in%20supersonic%20boundary%20layers&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Song,%20Runjie&rft.date=2023-09-12&rft.volume=971&rft.artnum=A4&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2023.629&rft_dat=%3Cproquest_cross%3E2863709969%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2863709969&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2023_629&rfr_iscdi=true