Improving Resnet-9 Generalization Trained on Small Datasets
This paper presents our proposed approach that won the first prize at the ICLR competition on Hardware Aware Efficient Training. The challenge is to achieve the highest possible accuracy in an image classification task in less than 10 minutes. The training is done on a small dataset of 5000 images p...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-09 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Omar Mohamed Awad Habib Hajimolahoseini Lim, Michael Gosal, Gurpreet Ahmed, Walid Liu, Yang Deng, Gordon |
description | This paper presents our proposed approach that won the first prize at the ICLR competition on Hardware Aware Efficient Training. The challenge is to achieve the highest possible accuracy in an image classification task in less than 10 minutes. The training is done on a small dataset of 5000 images picked randomly from CIFAR-10 dataset. The evaluation is performed by the competition organizers on a secret dataset with 1000 images of the same size. Our approach includes applying a series of technique for improving the generalization of ResNet-9 including: sharpness aware optimization, label smoothing, gradient centralization, input patch whitening as well as metalearning based training. Our experiments show that the ResNet-9 can achieve the accuracy of 88% while trained only on a 10% subset of CIFAR-10 dataset in less than 10 minuets |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2863617674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2863617674</sourcerecordid><originalsourceid>FETCH-proquest_journals_28636176743</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw9swtKMovy8xLVwhKLc5LLdG1VHBPzUstSszJrEosyczPUwgpSszMS01RADKDcxNzchRcEksSi1NLinkYWNMSc4pTeaE0N4Oym2uIs4cu0MTC0tTikvis_NKiPKBUvJGFmbGZobmZuYkxcaoA5u43CA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2863617674</pqid></control><display><type>article</type><title>Improving Resnet-9 Generalization Trained on Small Datasets</title><source>Free E- Journals</source><creator>Omar Mohamed Awad ; Habib Hajimolahoseini ; Lim, Michael ; Gosal, Gurpreet ; Ahmed, Walid ; Liu, Yang ; Deng, Gordon</creator><creatorcontrib>Omar Mohamed Awad ; Habib Hajimolahoseini ; Lim, Michael ; Gosal, Gurpreet ; Ahmed, Walid ; Liu, Yang ; Deng, Gordon</creatorcontrib><description>This paper presents our proposed approach that won the first prize at the ICLR competition on Hardware Aware Efficient Training. The challenge is to achieve the highest possible accuracy in an image classification task in less than 10 minutes. The training is done on a small dataset of 5000 images picked randomly from CIFAR-10 dataset. The evaluation is performed by the competition organizers on a secret dataset with 1000 images of the same size. Our approach includes applying a series of technique for improving the generalization of ResNet-9 including: sharpness aware optimization, label smoothing, gradient centralization, input patch whitening as well as metalearning based training. Our experiments show that the ResNet-9 can achieve the accuracy of 88% while trained only on a 10% subset of CIFAR-10 dataset in less than 10 minuets</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Image classification ; Optimization ; Training</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Omar Mohamed Awad</creatorcontrib><creatorcontrib>Habib Hajimolahoseini</creatorcontrib><creatorcontrib>Lim, Michael</creatorcontrib><creatorcontrib>Gosal, Gurpreet</creatorcontrib><creatorcontrib>Ahmed, Walid</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Deng, Gordon</creatorcontrib><title>Improving Resnet-9 Generalization Trained on Small Datasets</title><title>arXiv.org</title><description>This paper presents our proposed approach that won the first prize at the ICLR competition on Hardware Aware Efficient Training. The challenge is to achieve the highest possible accuracy in an image classification task in less than 10 minutes. The training is done on a small dataset of 5000 images picked randomly from CIFAR-10 dataset. The evaluation is performed by the competition organizers on a secret dataset with 1000 images of the same size. Our approach includes applying a series of technique for improving the generalization of ResNet-9 including: sharpness aware optimization, label smoothing, gradient centralization, input patch whitening as well as metalearning based training. Our experiments show that the ResNet-9 can achieve the accuracy of 88% while trained only on a 10% subset of CIFAR-10 dataset in less than 10 minuets</description><subject>Datasets</subject><subject>Image classification</subject><subject>Optimization</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw9swtKMovy8xLVwhKLc5LLdG1VHBPzUstSszJrEosyczPUwgpSszMS01RADKDcxNzchRcEksSi1NLinkYWNMSc4pTeaE0N4Oym2uIs4cu0MTC0tTikvis_NKiPKBUvJGFmbGZobmZuYkxcaoA5u43CA</recordid><startdate>20230907</startdate><enddate>20230907</enddate><creator>Omar Mohamed Awad</creator><creator>Habib Hajimolahoseini</creator><creator>Lim, Michael</creator><creator>Gosal, Gurpreet</creator><creator>Ahmed, Walid</creator><creator>Liu, Yang</creator><creator>Deng, Gordon</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230907</creationdate><title>Improving Resnet-9 Generalization Trained on Small Datasets</title><author>Omar Mohamed Awad ; Habib Hajimolahoseini ; Lim, Michael ; Gosal, Gurpreet ; Ahmed, Walid ; Liu, Yang ; Deng, Gordon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28636176743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Datasets</topic><topic>Image classification</topic><topic>Optimization</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Omar Mohamed Awad</creatorcontrib><creatorcontrib>Habib Hajimolahoseini</creatorcontrib><creatorcontrib>Lim, Michael</creatorcontrib><creatorcontrib>Gosal, Gurpreet</creatorcontrib><creatorcontrib>Ahmed, Walid</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Deng, Gordon</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Omar Mohamed Awad</au><au>Habib Hajimolahoseini</au><au>Lim, Michael</au><au>Gosal, Gurpreet</au><au>Ahmed, Walid</au><au>Liu, Yang</au><au>Deng, Gordon</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Improving Resnet-9 Generalization Trained on Small Datasets</atitle><jtitle>arXiv.org</jtitle><date>2023-09-07</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This paper presents our proposed approach that won the first prize at the ICLR competition on Hardware Aware Efficient Training. The challenge is to achieve the highest possible accuracy in an image classification task in less than 10 minutes. The training is done on a small dataset of 5000 images picked randomly from CIFAR-10 dataset. The evaluation is performed by the competition organizers on a secret dataset with 1000 images of the same size. Our approach includes applying a series of technique for improving the generalization of ResNet-9 including: sharpness aware optimization, label smoothing, gradient centralization, input patch whitening as well as metalearning based training. Our experiments show that the ResNet-9 can achieve the accuracy of 88% while trained only on a 10% subset of CIFAR-10 dataset in less than 10 minuets</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2863617674 |
source | Free E- Journals |
subjects | Datasets Image classification Optimization Training |
title | Improving Resnet-9 Generalization Trained on Small Datasets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A56%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Improving%20Resnet-9%20Generalization%20Trained%20on%20Small%20Datasets&rft.jtitle=arXiv.org&rft.au=Omar%20Mohamed%20Awad&rft.date=2023-09-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2863617674%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2863617674&rft_id=info:pmid/&rfr_iscdi=true |