Revisiting the pseudo-supercritical path method: An improved formulation for the alchemical calculation of solid–liquid coexistence

Alchemical free energy calculations via molecular dynamics have been applied to obtain thermodynamic properties related to solid–liquid equilibrium conditions, such as melting points. In recent years, the pseudo-supercritical path (PSCP) method has proved to be an important approach to melting point...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2023-09, Vol.159 (10)
Hauptverfasser: Correa, Gabriela B., Zhang, Yong, Abreu, Charlles R. A., Tavares, Frederico W., Maginn, Edward J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title The Journal of chemical physics
container_volume 159
creator Correa, Gabriela B.
Zhang, Yong
Abreu, Charlles R. A.
Tavares, Frederico W.
Maginn, Edward J.
description Alchemical free energy calculations via molecular dynamics have been applied to obtain thermodynamic properties related to solid–liquid equilibrium conditions, such as melting points. In recent years, the pseudo-supercritical path (PSCP) method has proved to be an important approach to melting point prediction due to its flexibility and applicability. In the present work, we propose improvements to the PSCP alchemical cycle to make it more compact and efficient through a concerted evaluation of different potential energies. The multistate Bennett acceptance ratio (MBAR) estimator was applied at all stages of the new cycle to provide greater accuracy and uniformity, which is essential concerning uncertainty calculations. In particular, for the multistate expansion stage from solid to liquid, we employed the MBAR estimator with a reduced energy function that allows affine transformations of coordinates. Free energy and mean derivative profiles were calculated at different cycle stages for argon, triazole, propenal, and the ionic liquid 1-ethyl-3-methyl-imidazolium hexafluorophosphate. Comparisons showed a better performance of the proposed method than the original PSCP cycle for systems with higher complexity, especially the ionic liquid. A detailed study of the expansion stage revealed that remapping the centers of mass of the molecules or ions is preferable to remapping the coordinates of each atom, yielding better overlap between adjacent states and improving the accuracy of the methodology.
doi_str_mv 10.1063/5.0163564
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2863583778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2863583778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-6d9407af278846f003615ff7813334429be1a6c356cff231fa28cf1df09c3213</originalsourceid><addsrcrecordid>eNp90c2O1SAUB3BiNPE6uvANiG50ko4HaKF1N5n4lUxiYmZP8PRgmbSlA3Ti7Nz4BL6hT2LvvePGhQsCgR8n_DmMPRdwJkCrN80ZCK0aXT9gOwFtVxndwUO2A5Ci6jTox-xJztcAIIysd-znF7oNOZQwf-NlIL5kWvtY5XWhhGnbRzfyxZWBT1SG2L_l5zMP05LiLfXcxzStoyshzvv1oYIbcaDpcG8b-Pc4ep7jGPrfP36N4WYNPcdI30MuNCM9ZY-8GzM9u59P2NX7d1cXH6vLzx8-XZxfVqiELJXuuxqM89K0ba09gNKi8d60QilV17L7SsJp3OKj91IJ72SLXvQeOlRSqBP24lg25hJsxlAIB4zzTFisVEooaDb06oi2jDcr5WKnkJHG0c0U12xlq5XRpuv29OU_9Dquad4SHFTTKmPaTb0-Kkwx50TeLilMLt1ZAXbfNNvY-6Zt9vRo9487fNx_8B9QRph5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2863583778</pqid></control><display><type>article</type><title>Revisiting the pseudo-supercritical path method: An improved formulation for the alchemical calculation of solid–liquid coexistence</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Correa, Gabriela B. ; Zhang, Yong ; Abreu, Charlles R. A. ; Tavares, Frederico W. ; Maginn, Edward J.</creator><creatorcontrib>Correa, Gabriela B. ; Zhang, Yong ; Abreu, Charlles R. A. ; Tavares, Frederico W. ; Maginn, Edward J. ; Case Western Reserve Univ., Cleveland, OH (United States)</creatorcontrib><description>Alchemical free energy calculations via molecular dynamics have been applied to obtain thermodynamic properties related to solid–liquid equilibrium conditions, such as melting points. In recent years, the pseudo-supercritical path (PSCP) method has proved to be an important approach to melting point prediction due to its flexibility and applicability. In the present work, we propose improvements to the PSCP alchemical cycle to make it more compact and efficient through a concerted evaluation of different potential energies. The multistate Bennett acceptance ratio (MBAR) estimator was applied at all stages of the new cycle to provide greater accuracy and uniformity, which is essential concerning uncertainty calculations. In particular, for the multistate expansion stage from solid to liquid, we employed the MBAR estimator with a reduced energy function that allows affine transformations of coordinates. Free energy and mean derivative profiles were calculated at different cycle stages for argon, triazole, propenal, and the ionic liquid 1-ethyl-3-methyl-imidazolium hexafluorophosphate. Comparisons showed a better performance of the proposed method than the original PSCP cycle for systems with higher complexity, especially the ionic liquid. A detailed study of the expansion stage revealed that remapping the centers of mass of the molecules or ions is preferable to remapping the coordinates of each atom, yielding better overlap between adjacent states and improving the accuracy of the methodology.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0163564</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Affine transformations ; Argon ; Electrostatics ; ENERGY STORAGE ; Equilibrium conditions ; Free energy ; Free energy calculations ; Ionic liquids ; Ions ; Mathematical analysis ; Melting points ; Molecular dynamics ; Phase transitions ; Thermodynamic cycles ; Thermodynamic equilibrium ; Thermodynamic properties</subject><ispartof>The Journal of chemical physics, 2023-09, Vol.159 (10)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c312t-6d9407af278846f003615ff7813334429be1a6c356cff231fa28cf1df09c3213</cites><orcidid>0000-0003-1974-7502 ; 0000-0002-6956-4045 ; 0000-0002-6309-1347 ; 0000-0003-3988-5961 ; 0000-0001-8108-1719 ; 0000000181081719 ; 0000000319747502 ; 0000000339885961 ; 0000000269564045 ; 0000000263091347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0163564$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2331305$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Correa, Gabriela B.</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Abreu, Charlles R. A.</creatorcontrib><creatorcontrib>Tavares, Frederico W.</creatorcontrib><creatorcontrib>Maginn, Edward J.</creatorcontrib><creatorcontrib>Case Western Reserve Univ., Cleveland, OH (United States)</creatorcontrib><title>Revisiting the pseudo-supercritical path method: An improved formulation for the alchemical calculation of solid–liquid coexistence</title><title>The Journal of chemical physics</title><description>Alchemical free energy calculations via molecular dynamics have been applied to obtain thermodynamic properties related to solid–liquid equilibrium conditions, such as melting points. In recent years, the pseudo-supercritical path (PSCP) method has proved to be an important approach to melting point prediction due to its flexibility and applicability. In the present work, we propose improvements to the PSCP alchemical cycle to make it more compact and efficient through a concerted evaluation of different potential energies. The multistate Bennett acceptance ratio (MBAR) estimator was applied at all stages of the new cycle to provide greater accuracy and uniformity, which is essential concerning uncertainty calculations. In particular, for the multistate expansion stage from solid to liquid, we employed the MBAR estimator with a reduced energy function that allows affine transformations of coordinates. Free energy and mean derivative profiles were calculated at different cycle stages for argon, triazole, propenal, and the ionic liquid 1-ethyl-3-methyl-imidazolium hexafluorophosphate. Comparisons showed a better performance of the proposed method than the original PSCP cycle for systems with higher complexity, especially the ionic liquid. A detailed study of the expansion stage revealed that remapping the centers of mass of the molecules or ions is preferable to remapping the coordinates of each atom, yielding better overlap between adjacent states and improving the accuracy of the methodology.</description><subject>Affine transformations</subject><subject>Argon</subject><subject>Electrostatics</subject><subject>ENERGY STORAGE</subject><subject>Equilibrium conditions</subject><subject>Free energy</subject><subject>Free energy calculations</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Mathematical analysis</subject><subject>Melting points</subject><subject>Molecular dynamics</subject><subject>Phase transitions</subject><subject>Thermodynamic cycles</subject><subject>Thermodynamic equilibrium</subject><subject>Thermodynamic properties</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90c2O1SAUB3BiNPE6uvANiG50ko4HaKF1N5n4lUxiYmZP8PRgmbSlA3Ti7Nz4BL6hT2LvvePGhQsCgR8n_DmMPRdwJkCrN80ZCK0aXT9gOwFtVxndwUO2A5Ci6jTox-xJztcAIIysd-znF7oNOZQwf-NlIL5kWvtY5XWhhGnbRzfyxZWBT1SG2L_l5zMP05LiLfXcxzStoyshzvv1oYIbcaDpcG8b-Pc4ep7jGPrfP36N4WYNPcdI30MuNCM9ZY-8GzM9u59P2NX7d1cXH6vLzx8-XZxfVqiELJXuuxqM89K0ba09gNKi8d60QilV17L7SsJp3OKj91IJ72SLXvQeOlRSqBP24lg25hJsxlAIB4zzTFisVEooaDb06oi2jDcr5WKnkJHG0c0U12xlq5XRpuv29OU_9Dquad4SHFTTKmPaTb0-Kkwx50TeLilMLt1ZAXbfNNvY-6Zt9vRo9487fNx_8B9QRph5</recordid><startdate>20230914</startdate><enddate>20230914</enddate><creator>Correa, Gabriela B.</creator><creator>Zhang, Yong</creator><creator>Abreu, Charlles R. A.</creator><creator>Tavares, Frederico W.</creator><creator>Maginn, Edward J.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1974-7502</orcidid><orcidid>https://orcid.org/0000-0002-6956-4045</orcidid><orcidid>https://orcid.org/0000-0002-6309-1347</orcidid><orcidid>https://orcid.org/0000-0003-3988-5961</orcidid><orcidid>https://orcid.org/0000-0001-8108-1719</orcidid><orcidid>https://orcid.org/0000000181081719</orcidid><orcidid>https://orcid.org/0000000319747502</orcidid><orcidid>https://orcid.org/0000000339885961</orcidid><orcidid>https://orcid.org/0000000269564045</orcidid><orcidid>https://orcid.org/0000000263091347</orcidid></search><sort><creationdate>20230914</creationdate><title>Revisiting the pseudo-supercritical path method: An improved formulation for the alchemical calculation of solid–liquid coexistence</title><author>Correa, Gabriela B. ; Zhang, Yong ; Abreu, Charlles R. A. ; Tavares, Frederico W. ; Maginn, Edward J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-6d9407af278846f003615ff7813334429be1a6c356cff231fa28cf1df09c3213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Affine transformations</topic><topic>Argon</topic><topic>Electrostatics</topic><topic>ENERGY STORAGE</topic><topic>Equilibrium conditions</topic><topic>Free energy</topic><topic>Free energy calculations</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Mathematical analysis</topic><topic>Melting points</topic><topic>Molecular dynamics</topic><topic>Phase transitions</topic><topic>Thermodynamic cycles</topic><topic>Thermodynamic equilibrium</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Correa, Gabriela B.</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Abreu, Charlles R. A.</creatorcontrib><creatorcontrib>Tavares, Frederico W.</creatorcontrib><creatorcontrib>Maginn, Edward J.</creatorcontrib><creatorcontrib>Case Western Reserve Univ., Cleveland, OH (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Correa, Gabriela B.</au><au>Zhang, Yong</au><au>Abreu, Charlles R. A.</au><au>Tavares, Frederico W.</au><au>Maginn, Edward J.</au><aucorp>Case Western Reserve Univ., Cleveland, OH (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting the pseudo-supercritical path method: An improved formulation for the alchemical calculation of solid–liquid coexistence</atitle><jtitle>The Journal of chemical physics</jtitle><date>2023-09-14</date><risdate>2023</risdate><volume>159</volume><issue>10</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Alchemical free energy calculations via molecular dynamics have been applied to obtain thermodynamic properties related to solid–liquid equilibrium conditions, such as melting points. In recent years, the pseudo-supercritical path (PSCP) method has proved to be an important approach to melting point prediction due to its flexibility and applicability. In the present work, we propose improvements to the PSCP alchemical cycle to make it more compact and efficient through a concerted evaluation of different potential energies. The multistate Bennett acceptance ratio (MBAR) estimator was applied at all stages of the new cycle to provide greater accuracy and uniformity, which is essential concerning uncertainty calculations. In particular, for the multistate expansion stage from solid to liquid, we employed the MBAR estimator with a reduced energy function that allows affine transformations of coordinates. Free energy and mean derivative profiles were calculated at different cycle stages for argon, triazole, propenal, and the ionic liquid 1-ethyl-3-methyl-imidazolium hexafluorophosphate. Comparisons showed a better performance of the proposed method than the original PSCP cycle for systems with higher complexity, especially the ionic liquid. A detailed study of the expansion stage revealed that remapping the centers of mass of the molecules or ions is preferable to remapping the coordinates of each atom, yielding better overlap between adjacent states and improving the accuracy of the methodology.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0163564</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1974-7502</orcidid><orcidid>https://orcid.org/0000-0002-6956-4045</orcidid><orcidid>https://orcid.org/0000-0002-6309-1347</orcidid><orcidid>https://orcid.org/0000-0003-3988-5961</orcidid><orcidid>https://orcid.org/0000-0001-8108-1719</orcidid><orcidid>https://orcid.org/0000000181081719</orcidid><orcidid>https://orcid.org/0000000319747502</orcidid><orcidid>https://orcid.org/0000000339885961</orcidid><orcidid>https://orcid.org/0000000269564045</orcidid><orcidid>https://orcid.org/0000000263091347</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2023-09, Vol.159 (10)
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_journals_2863583778
source AIP Journals Complete; Alma/SFX Local Collection
subjects Affine transformations
Argon
Electrostatics
ENERGY STORAGE
Equilibrium conditions
Free energy
Free energy calculations
Ionic liquids
Ions
Mathematical analysis
Melting points
Molecular dynamics
Phase transitions
Thermodynamic cycles
Thermodynamic equilibrium
Thermodynamic properties
title Revisiting the pseudo-supercritical path method: An improved formulation for the alchemical calculation of solid–liquid coexistence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A33%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20the%20pseudo-supercritical%20path%20method:%20An%20improved%20formulation%20for%20the%20alchemical%20calculation%20of%20solid%E2%80%93liquid%20coexistence&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Correa,%20Gabriela%20B.&rft.aucorp=Case%20Western%20Reserve%20Univ.,%20Cleveland,%20OH%20(United%20States)&rft.date=2023-09-14&rft.volume=159&rft.issue=10&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0163564&rft_dat=%3Cproquest_osti_%3E2863583778%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2863583778&rft_id=info:pmid/&rfr_iscdi=true