Revisiting the pseudo-supercritical path method: An improved formulation for the alchemical calculation of solid–liquid coexistence
Alchemical free energy calculations via molecular dynamics have been applied to obtain thermodynamic properties related to solid–liquid equilibrium conditions, such as melting points. In recent years, the pseudo-supercritical path (PSCP) method has proved to be an important approach to melting point...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2023-09, Vol.159 (10) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 159 |
creator | Correa, Gabriela B. Zhang, Yong Abreu, Charlles R. A. Tavares, Frederico W. Maginn, Edward J. |
description | Alchemical free energy calculations via molecular dynamics have been applied to obtain thermodynamic properties related to solid–liquid equilibrium conditions, such as melting points. In recent years, the pseudo-supercritical path (PSCP) method has proved to be an important approach to melting point prediction due to its flexibility and applicability. In the present work, we propose improvements to the PSCP alchemical cycle to make it more compact and efficient through a concerted evaluation of different potential energies. The multistate Bennett acceptance ratio (MBAR) estimator was applied at all stages of the new cycle to provide greater accuracy and uniformity, which is essential concerning uncertainty calculations. In particular, for the multistate expansion stage from solid to liquid, we employed the MBAR estimator with a reduced energy function that allows affine transformations of coordinates. Free energy and mean derivative profiles were calculated at different cycle stages for argon, triazole, propenal, and the ionic liquid 1-ethyl-3-methyl-imidazolium hexafluorophosphate. Comparisons showed a better performance of the proposed method than the original PSCP cycle for systems with higher complexity, especially the ionic liquid. A detailed study of the expansion stage revealed that remapping the centers of mass of the molecules or ions is preferable to remapping the coordinates of each atom, yielding better overlap between adjacent states and improving the accuracy of the methodology. |
doi_str_mv | 10.1063/5.0163564 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2863583778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2863583778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-6d9407af278846f003615ff7813334429be1a6c356cff231fa28cf1df09c3213</originalsourceid><addsrcrecordid>eNp90c2O1SAUB3BiNPE6uvANiG50ko4HaKF1N5n4lUxiYmZP8PRgmbSlA3Ti7Nz4BL6hT2LvvePGhQsCgR8n_DmMPRdwJkCrN80ZCK0aXT9gOwFtVxndwUO2A5Ci6jTox-xJztcAIIysd-znF7oNOZQwf-NlIL5kWvtY5XWhhGnbRzfyxZWBT1SG2L_l5zMP05LiLfXcxzStoyshzvv1oYIbcaDpcG8b-Pc4ep7jGPrfP36N4WYNPcdI30MuNCM9ZY-8GzM9u59P2NX7d1cXH6vLzx8-XZxfVqiELJXuuxqM89K0ba09gNKi8d60QilV17L7SsJp3OKj91IJ72SLXvQeOlRSqBP24lg25hJsxlAIB4zzTFisVEooaDb06oi2jDcr5WKnkJHG0c0U12xlq5XRpuv29OU_9Dquad4SHFTTKmPaTb0-Kkwx50TeLilMLt1ZAXbfNNvY-6Zt9vRo9487fNx_8B9QRph5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2863583778</pqid></control><display><type>article</type><title>Revisiting the pseudo-supercritical path method: An improved formulation for the alchemical calculation of solid–liquid coexistence</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Correa, Gabriela B. ; Zhang, Yong ; Abreu, Charlles R. A. ; Tavares, Frederico W. ; Maginn, Edward J.</creator><creatorcontrib>Correa, Gabriela B. ; Zhang, Yong ; Abreu, Charlles R. A. ; Tavares, Frederico W. ; Maginn, Edward J. ; Case Western Reserve Univ., Cleveland, OH (United States)</creatorcontrib><description>Alchemical free energy calculations via molecular dynamics have been applied to obtain thermodynamic properties related to solid–liquid equilibrium conditions, such as melting points. In recent years, the pseudo-supercritical path (PSCP) method has proved to be an important approach to melting point prediction due to its flexibility and applicability. In the present work, we propose improvements to the PSCP alchemical cycle to make it more compact and efficient through a concerted evaluation of different potential energies. The multistate Bennett acceptance ratio (MBAR) estimator was applied at all stages of the new cycle to provide greater accuracy and uniformity, which is essential concerning uncertainty calculations. In particular, for the multistate expansion stage from solid to liquid, we employed the MBAR estimator with a reduced energy function that allows affine transformations of coordinates. Free energy and mean derivative profiles were calculated at different cycle stages for argon, triazole, propenal, and the ionic liquid 1-ethyl-3-methyl-imidazolium hexafluorophosphate. Comparisons showed a better performance of the proposed method than the original PSCP cycle for systems with higher complexity, especially the ionic liquid. A detailed study of the expansion stage revealed that remapping the centers of mass of the molecules or ions is preferable to remapping the coordinates of each atom, yielding better overlap between adjacent states and improving the accuracy of the methodology.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0163564</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Affine transformations ; Argon ; Electrostatics ; ENERGY STORAGE ; Equilibrium conditions ; Free energy ; Free energy calculations ; Ionic liquids ; Ions ; Mathematical analysis ; Melting points ; Molecular dynamics ; Phase transitions ; Thermodynamic cycles ; Thermodynamic equilibrium ; Thermodynamic properties</subject><ispartof>The Journal of chemical physics, 2023-09, Vol.159 (10)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c312t-6d9407af278846f003615ff7813334429be1a6c356cff231fa28cf1df09c3213</cites><orcidid>0000-0003-1974-7502 ; 0000-0002-6956-4045 ; 0000-0002-6309-1347 ; 0000-0003-3988-5961 ; 0000-0001-8108-1719 ; 0000000181081719 ; 0000000319747502 ; 0000000339885961 ; 0000000269564045 ; 0000000263091347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0163564$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2331305$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Correa, Gabriela B.</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Abreu, Charlles R. A.</creatorcontrib><creatorcontrib>Tavares, Frederico W.</creatorcontrib><creatorcontrib>Maginn, Edward J.</creatorcontrib><creatorcontrib>Case Western Reserve Univ., Cleveland, OH (United States)</creatorcontrib><title>Revisiting the pseudo-supercritical path method: An improved formulation for the alchemical calculation of solid–liquid coexistence</title><title>The Journal of chemical physics</title><description>Alchemical free energy calculations via molecular dynamics have been applied to obtain thermodynamic properties related to solid–liquid equilibrium conditions, such as melting points. In recent years, the pseudo-supercritical path (PSCP) method has proved to be an important approach to melting point prediction due to its flexibility and applicability. In the present work, we propose improvements to the PSCP alchemical cycle to make it more compact and efficient through a concerted evaluation of different potential energies. The multistate Bennett acceptance ratio (MBAR) estimator was applied at all stages of the new cycle to provide greater accuracy and uniformity, which is essential concerning uncertainty calculations. In particular, for the multistate expansion stage from solid to liquid, we employed the MBAR estimator with a reduced energy function that allows affine transformations of coordinates. Free energy and mean derivative profiles were calculated at different cycle stages for argon, triazole, propenal, and the ionic liquid 1-ethyl-3-methyl-imidazolium hexafluorophosphate. Comparisons showed a better performance of the proposed method than the original PSCP cycle for systems with higher complexity, especially the ionic liquid. A detailed study of the expansion stage revealed that remapping the centers of mass of the molecules or ions is preferable to remapping the coordinates of each atom, yielding better overlap between adjacent states and improving the accuracy of the methodology.</description><subject>Affine transformations</subject><subject>Argon</subject><subject>Electrostatics</subject><subject>ENERGY STORAGE</subject><subject>Equilibrium conditions</subject><subject>Free energy</subject><subject>Free energy calculations</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Mathematical analysis</subject><subject>Melting points</subject><subject>Molecular dynamics</subject><subject>Phase transitions</subject><subject>Thermodynamic cycles</subject><subject>Thermodynamic equilibrium</subject><subject>Thermodynamic properties</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90c2O1SAUB3BiNPE6uvANiG50ko4HaKF1N5n4lUxiYmZP8PRgmbSlA3Ti7Nz4BL6hT2LvvePGhQsCgR8n_DmMPRdwJkCrN80ZCK0aXT9gOwFtVxndwUO2A5Ci6jTox-xJztcAIIysd-znF7oNOZQwf-NlIL5kWvtY5XWhhGnbRzfyxZWBT1SG2L_l5zMP05LiLfXcxzStoyshzvv1oYIbcaDpcG8b-Pc4ep7jGPrfP36N4WYNPcdI30MuNCM9ZY-8GzM9u59P2NX7d1cXH6vLzx8-XZxfVqiELJXuuxqM89K0ba09gNKi8d60QilV17L7SsJp3OKj91IJ72SLXvQeOlRSqBP24lg25hJsxlAIB4zzTFisVEooaDb06oi2jDcr5WKnkJHG0c0U12xlq5XRpuv29OU_9Dquad4SHFTTKmPaTb0-Kkwx50TeLilMLt1ZAXbfNNvY-6Zt9vRo9487fNx_8B9QRph5</recordid><startdate>20230914</startdate><enddate>20230914</enddate><creator>Correa, Gabriela B.</creator><creator>Zhang, Yong</creator><creator>Abreu, Charlles R. A.</creator><creator>Tavares, Frederico W.</creator><creator>Maginn, Edward J.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1974-7502</orcidid><orcidid>https://orcid.org/0000-0002-6956-4045</orcidid><orcidid>https://orcid.org/0000-0002-6309-1347</orcidid><orcidid>https://orcid.org/0000-0003-3988-5961</orcidid><orcidid>https://orcid.org/0000-0001-8108-1719</orcidid><orcidid>https://orcid.org/0000000181081719</orcidid><orcidid>https://orcid.org/0000000319747502</orcidid><orcidid>https://orcid.org/0000000339885961</orcidid><orcidid>https://orcid.org/0000000269564045</orcidid><orcidid>https://orcid.org/0000000263091347</orcidid></search><sort><creationdate>20230914</creationdate><title>Revisiting the pseudo-supercritical path method: An improved formulation for the alchemical calculation of solid–liquid coexistence</title><author>Correa, Gabriela B. ; Zhang, Yong ; Abreu, Charlles R. A. ; Tavares, Frederico W. ; Maginn, Edward J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-6d9407af278846f003615ff7813334429be1a6c356cff231fa28cf1df09c3213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Affine transformations</topic><topic>Argon</topic><topic>Electrostatics</topic><topic>ENERGY STORAGE</topic><topic>Equilibrium conditions</topic><topic>Free energy</topic><topic>Free energy calculations</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Mathematical analysis</topic><topic>Melting points</topic><topic>Molecular dynamics</topic><topic>Phase transitions</topic><topic>Thermodynamic cycles</topic><topic>Thermodynamic equilibrium</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Correa, Gabriela B.</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Abreu, Charlles R. A.</creatorcontrib><creatorcontrib>Tavares, Frederico W.</creatorcontrib><creatorcontrib>Maginn, Edward J.</creatorcontrib><creatorcontrib>Case Western Reserve Univ., Cleveland, OH (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Correa, Gabriela B.</au><au>Zhang, Yong</au><au>Abreu, Charlles R. A.</au><au>Tavares, Frederico W.</au><au>Maginn, Edward J.</au><aucorp>Case Western Reserve Univ., Cleveland, OH (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting the pseudo-supercritical path method: An improved formulation for the alchemical calculation of solid–liquid coexistence</atitle><jtitle>The Journal of chemical physics</jtitle><date>2023-09-14</date><risdate>2023</risdate><volume>159</volume><issue>10</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Alchemical free energy calculations via molecular dynamics have been applied to obtain thermodynamic properties related to solid–liquid equilibrium conditions, such as melting points. In recent years, the pseudo-supercritical path (PSCP) method has proved to be an important approach to melting point prediction due to its flexibility and applicability. In the present work, we propose improvements to the PSCP alchemical cycle to make it more compact and efficient through a concerted evaluation of different potential energies. The multistate Bennett acceptance ratio (MBAR) estimator was applied at all stages of the new cycle to provide greater accuracy and uniformity, which is essential concerning uncertainty calculations. In particular, for the multistate expansion stage from solid to liquid, we employed the MBAR estimator with a reduced energy function that allows affine transformations of coordinates. Free energy and mean derivative profiles were calculated at different cycle stages for argon, triazole, propenal, and the ionic liquid 1-ethyl-3-methyl-imidazolium hexafluorophosphate. Comparisons showed a better performance of the proposed method than the original PSCP cycle for systems with higher complexity, especially the ionic liquid. A detailed study of the expansion stage revealed that remapping the centers of mass of the molecules or ions is preferable to remapping the coordinates of each atom, yielding better overlap between adjacent states and improving the accuracy of the methodology.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0163564</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1974-7502</orcidid><orcidid>https://orcid.org/0000-0002-6956-4045</orcidid><orcidid>https://orcid.org/0000-0002-6309-1347</orcidid><orcidid>https://orcid.org/0000-0003-3988-5961</orcidid><orcidid>https://orcid.org/0000-0001-8108-1719</orcidid><orcidid>https://orcid.org/0000000181081719</orcidid><orcidid>https://orcid.org/0000000319747502</orcidid><orcidid>https://orcid.org/0000000339885961</orcidid><orcidid>https://orcid.org/0000000269564045</orcidid><orcidid>https://orcid.org/0000000263091347</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2023-09, Vol.159 (10) |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_journals_2863583778 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Affine transformations Argon Electrostatics ENERGY STORAGE Equilibrium conditions Free energy Free energy calculations Ionic liquids Ions Mathematical analysis Melting points Molecular dynamics Phase transitions Thermodynamic cycles Thermodynamic equilibrium Thermodynamic properties |
title | Revisiting the pseudo-supercritical path method: An improved formulation for the alchemical calculation of solid–liquid coexistence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A33%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20the%20pseudo-supercritical%20path%20method:%20An%20improved%20formulation%20for%20the%20alchemical%20calculation%20of%20solid%E2%80%93liquid%20coexistence&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Correa,%20Gabriela%20B.&rft.aucorp=Case%20Western%20Reserve%20Univ.,%20Cleveland,%20OH%20(United%20States)&rft.date=2023-09-14&rft.volume=159&rft.issue=10&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0163564&rft_dat=%3Cproquest_osti_%3E2863583778%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2863583778&rft_id=info:pmid/&rfr_iscdi=true |