Monitoring Strategy of Geological Hazards Using Integrated Three-dimensional InSAR and GNSS Technologies with Case Study
Geodetic/geodynamic benchmarks, equipped with both ascending and descending radar corner reflectors, and a method for integrated InSAR and GNSS/GPS network observation were developed and applied as the continuation of the former geodetic monitoring at the Dunaszekcső landslide, Hungary. The attempts...
Gespeichert in:
Veröffentlicht in: | Periodica polytechnica. Civil engineering. Bauingenieurwesen 2023-10, Vol.67 (4), p.992 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 992 |
container_title | Periodica polytechnica. Civil engineering. Bauingenieurwesen |
container_volume | 67 |
creator | Bányai, László Bozsó, István Szűcs, Eszter Gribovszki, Katalin Wesztergom, Viktor |
description | Geodetic/geodynamic benchmarks, equipped with both ascending and descending radar corner reflectors, and a method for integrated InSAR and GNSS/GPS network observation were developed and applied as the continuation of the former geodetic monitoring at the Dunaszekcső landslide, Hungary. The attempts to apply InSAR technologies using archive and Sentinel-1 data practically failed on the most intensive landside areas (“Vár” and “Szent János” hills), where proper persistent or distributed scatterers were not found. Our concept solved this problem, where the Simple Look Complex (SLC) images are used to interpolate the movements between two GNSS network observations using the integrated benchmarks and the method of Kalman-filtering. Since the InSAR line-of-sight (LOS) changes are barely sensitive to the north movements, this information is essentially provided by GNSS measurement alone, moreover, the GNSS measurements are used to: a) identify the benchmarks, b) detect the unwrapping errors and missing cycles and c) provide the boundary values of Kalman-filtering.After the installation of benchmarks three GPS observations were carried out and 69 ascending and 61 descending Sentinel-1 A and B images were processed. The data processing properly indicated the general movement history, which fit the curves of former geodetic observations, as well. The dense data points of the East and Up (vertical) components made possible more detailed geomorphologic interpretations of the ongoing process between two GPS observations. During the investigated periods the deceleration of movements was experienced, however, the deceleration of the dormant state needs the continuation of the monitoring. |
doi_str_mv | 10.3311/PPci.20009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2862678535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2862678535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-10b171c69b8dc4e30a1981e3fbdad21e095a615b46c0890908010ae42a6964f93</originalsourceid><addsrcrecordid>eNot0EFPwjAUwPHGaCKiFz9BE28mw9d17dYjIQokqMTBeenaDkqgxXZE8dM70NO7_PLeyx-hewIDSgl5ms-VHaQAIC5Qj7AiT2ie00vUA8ZownnKr9FNjBsAziiFHvp-9c62Pli3wmUbZGtWR-wbPDZ-61dWyS2eyB8ZdMTLeEJT15GT03ixDsYk2u6Mi9a7jk5dOfzA0mk8fitLvDBq7c57TMRftl3jkYymu3PQx1t01chtNHf_s4-WL8-L0SSZvY-no-EsUalgbUKgJjlRXNSFVpmhIIkoiKFNraVOiQHBJCeszriCQoCAAghIk6WSC541gvbRw9_effCfBxPbauMPoXs2VmnR9cgLRlmnHv-UCj7GYJpqH-xOhmNFoDqVrU5lq3NZ-gvIdmul</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862678535</pqid></control><display><type>article</type><title>Monitoring Strategy of Geological Hazards Using Integrated Three-dimensional InSAR and GNSS Technologies with Case Study</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Bányai, László ; Bozsó, István ; Szűcs, Eszter ; Gribovszki, Katalin ; Wesztergom, Viktor</creator><creatorcontrib>Bányai, László ; Bozsó, István ; Szűcs, Eszter ; Gribovszki, Katalin ; Wesztergom, Viktor</creatorcontrib><description>Geodetic/geodynamic benchmarks, equipped with both ascending and descending radar corner reflectors, and a method for integrated InSAR and GNSS/GPS network observation were developed and applied as the continuation of the former geodetic monitoring at the Dunaszekcső landslide, Hungary. The attempts to apply InSAR technologies using archive and Sentinel-1 data practically failed on the most intensive landside areas (“Vár” and “Szent János” hills), where proper persistent or distributed scatterers were not found. Our concept solved this problem, where the Simple Look Complex (SLC) images are used to interpolate the movements between two GNSS network observations using the integrated benchmarks and the method of Kalman-filtering. Since the InSAR line-of-sight (LOS) changes are barely sensitive to the north movements, this information is essentially provided by GNSS measurement alone, moreover, the GNSS measurements are used to: a) identify the benchmarks, b) detect the unwrapping errors and missing cycles and c) provide the boundary values of Kalman-filtering.After the installation of benchmarks three GPS observations were carried out and 69 ascending and 61 descending Sentinel-1 A and B images were processed. The data processing properly indicated the general movement history, which fit the curves of former geodetic observations, as well. The dense data points of the East and Up (vertical) components made possible more detailed geomorphologic interpretations of the ongoing process between two GPS observations. During the investigated periods the deceleration of movements was experienced, however, the deceleration of the dormant state needs the continuation of the monitoring.</description><identifier>ISSN: 0553-6626</identifier><identifier>EISSN: 1587-3773</identifier><identifier>DOI: 10.3311/PPci.20009</identifier><language>eng</language><publisher>Budapest: Periodica Polytechnica, Budapest University of Technology and Economics</publisher><subject>Archives & records ; Benchmarks ; Case studies ; Data analysis ; Data points ; Data processing ; Deceleration ; Dormancy ; Geological hazards ; Geology ; Geomorphology ; Global navigation satellite system ; Global positioning systems ; GPS ; Interferometric synthetic aperture radar ; Kalman filters ; Landslides ; Landslides & mudslides ; Line of sight ; Monitoring ; Radar ; Radar corner reflectors ; Reflectors ; Satellite observation ; Satellites ; Sediments ; Software</subject><ispartof>Periodica polytechnica. Civil engineering. Bauingenieurwesen, 2023-10, Vol.67 (4), p.992</ispartof><rights>Copyright Periodica Polytechnica, Budapest University of Technology and Economics 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-10b171c69b8dc4e30a1981e3fbdad21e095a615b46c0890908010ae42a6964f93</citedby><orcidid>0000-0001-6781-4269 ; 0000-0003-2122-0996 ; 0000-0001-8254-1828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bányai, László</creatorcontrib><creatorcontrib>Bozsó, István</creatorcontrib><creatorcontrib>Szűcs, Eszter</creatorcontrib><creatorcontrib>Gribovszki, Katalin</creatorcontrib><creatorcontrib>Wesztergom, Viktor</creatorcontrib><title>Monitoring Strategy of Geological Hazards Using Integrated Three-dimensional InSAR and GNSS Technologies with Case Study</title><title>Periodica polytechnica. Civil engineering. Bauingenieurwesen</title><description>Geodetic/geodynamic benchmarks, equipped with both ascending and descending radar corner reflectors, and a method for integrated InSAR and GNSS/GPS network observation were developed and applied as the continuation of the former geodetic monitoring at the Dunaszekcső landslide, Hungary. The attempts to apply InSAR technologies using archive and Sentinel-1 data practically failed on the most intensive landside areas (“Vár” and “Szent János” hills), where proper persistent or distributed scatterers were not found. Our concept solved this problem, where the Simple Look Complex (SLC) images are used to interpolate the movements between two GNSS network observations using the integrated benchmarks and the method of Kalman-filtering. Since the InSAR line-of-sight (LOS) changes are barely sensitive to the north movements, this information is essentially provided by GNSS measurement alone, moreover, the GNSS measurements are used to: a) identify the benchmarks, b) detect the unwrapping errors and missing cycles and c) provide the boundary values of Kalman-filtering.After the installation of benchmarks three GPS observations were carried out and 69 ascending and 61 descending Sentinel-1 A and B images were processed. The data processing properly indicated the general movement history, which fit the curves of former geodetic observations, as well. The dense data points of the East and Up (vertical) components made possible more detailed geomorphologic interpretations of the ongoing process between two GPS observations. During the investigated periods the deceleration of movements was experienced, however, the deceleration of the dormant state needs the continuation of the monitoring.</description><subject>Archives & records</subject><subject>Benchmarks</subject><subject>Case studies</subject><subject>Data analysis</subject><subject>Data points</subject><subject>Data processing</subject><subject>Deceleration</subject><subject>Dormancy</subject><subject>Geological hazards</subject><subject>Geology</subject><subject>Geomorphology</subject><subject>Global navigation satellite system</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Interferometric synthetic aperture radar</subject><subject>Kalman filters</subject><subject>Landslides</subject><subject>Landslides & mudslides</subject><subject>Line of sight</subject><subject>Monitoring</subject><subject>Radar</subject><subject>Radar corner reflectors</subject><subject>Reflectors</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Sediments</subject><subject>Software</subject><issn>0553-6626</issn><issn>1587-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNot0EFPwjAUwPHGaCKiFz9BE28mw9d17dYjIQokqMTBeenaDkqgxXZE8dM70NO7_PLeyx-hewIDSgl5ms-VHaQAIC5Qj7AiT2ie00vUA8ZownnKr9FNjBsAziiFHvp-9c62Pli3wmUbZGtWR-wbPDZ-61dWyS2eyB8ZdMTLeEJT15GT03ixDsYk2u6Mi9a7jk5dOfzA0mk8fitLvDBq7c57TMRftl3jkYymu3PQx1t01chtNHf_s4-WL8-L0SSZvY-no-EsUalgbUKgJjlRXNSFVpmhIIkoiKFNraVOiQHBJCeszriCQoCAAghIk6WSC541gvbRw9_effCfBxPbauMPoXs2VmnR9cgLRlmnHv-UCj7GYJpqH-xOhmNFoDqVrU5lq3NZ-gvIdmul</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Bányai, László</creator><creator>Bozsó, István</creator><creator>Szűcs, Eszter</creator><creator>Gribovszki, Katalin</creator><creator>Wesztergom, Viktor</creator><general>Periodica Polytechnica, Budapest University of Technology and Economics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>BYOGL</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6781-4269</orcidid><orcidid>https://orcid.org/0000-0003-2122-0996</orcidid><orcidid>https://orcid.org/0000-0001-8254-1828</orcidid></search><sort><creationdate>20231001</creationdate><title>Monitoring Strategy of Geological Hazards Using Integrated Three-dimensional InSAR and GNSS Technologies with Case Study</title><author>Bányai, László ; Bozsó, István ; Szűcs, Eszter ; Gribovszki, Katalin ; Wesztergom, Viktor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-10b171c69b8dc4e30a1981e3fbdad21e095a615b46c0890908010ae42a6964f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Archives & records</topic><topic>Benchmarks</topic><topic>Case studies</topic><topic>Data analysis</topic><topic>Data points</topic><topic>Data processing</topic><topic>Deceleration</topic><topic>Dormancy</topic><topic>Geological hazards</topic><topic>Geology</topic><topic>Geomorphology</topic><topic>Global navigation satellite system</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Interferometric synthetic aperture radar</topic><topic>Kalman filters</topic><topic>Landslides</topic><topic>Landslides & mudslides</topic><topic>Line of sight</topic><topic>Monitoring</topic><topic>Radar</topic><topic>Radar corner reflectors</topic><topic>Reflectors</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Sediments</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bányai, László</creatorcontrib><creatorcontrib>Bozsó, István</creatorcontrib><creatorcontrib>Szűcs, Eszter</creatorcontrib><creatorcontrib>Gribovszki, Katalin</creatorcontrib><creatorcontrib>Wesztergom, Viktor</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>East Europe, Central Europe Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Periodica polytechnica. Civil engineering. Bauingenieurwesen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bányai, László</au><au>Bozsó, István</au><au>Szűcs, Eszter</au><au>Gribovszki, Katalin</au><au>Wesztergom, Viktor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring Strategy of Geological Hazards Using Integrated Three-dimensional InSAR and GNSS Technologies with Case Study</atitle><jtitle>Periodica polytechnica. Civil engineering. Bauingenieurwesen</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>67</volume><issue>4</issue><spage>992</spage><pages>992-</pages><issn>0553-6626</issn><eissn>1587-3773</eissn><abstract>Geodetic/geodynamic benchmarks, equipped with both ascending and descending radar corner reflectors, and a method for integrated InSAR and GNSS/GPS network observation were developed and applied as the continuation of the former geodetic monitoring at the Dunaszekcső landslide, Hungary. The attempts to apply InSAR technologies using archive and Sentinel-1 data practically failed on the most intensive landside areas (“Vár” and “Szent János” hills), where proper persistent or distributed scatterers were not found. Our concept solved this problem, where the Simple Look Complex (SLC) images are used to interpolate the movements between two GNSS network observations using the integrated benchmarks and the method of Kalman-filtering. Since the InSAR line-of-sight (LOS) changes are barely sensitive to the north movements, this information is essentially provided by GNSS measurement alone, moreover, the GNSS measurements are used to: a) identify the benchmarks, b) detect the unwrapping errors and missing cycles and c) provide the boundary values of Kalman-filtering.After the installation of benchmarks three GPS observations were carried out and 69 ascending and 61 descending Sentinel-1 A and B images were processed. The data processing properly indicated the general movement history, which fit the curves of former geodetic observations, as well. The dense data points of the East and Up (vertical) components made possible more detailed geomorphologic interpretations of the ongoing process between two GPS observations. During the investigated periods the deceleration of movements was experienced, however, the deceleration of the dormant state needs the continuation of the monitoring.</abstract><cop>Budapest</cop><pub>Periodica Polytechnica, Budapest University of Technology and Economics</pub><doi>10.3311/PPci.20009</doi><orcidid>https://orcid.org/0000-0001-6781-4269</orcidid><orcidid>https://orcid.org/0000-0003-2122-0996</orcidid><orcidid>https://orcid.org/0000-0001-8254-1828</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0553-6626 |
ispartof | Periodica polytechnica. Civil engineering. Bauingenieurwesen, 2023-10, Vol.67 (4), p.992 |
issn | 0553-6626 1587-3773 |
language | eng |
recordid | cdi_proquest_journals_2862678535 |
source | EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Archives & records Benchmarks Case studies Data analysis Data points Data processing Deceleration Dormancy Geological hazards Geology Geomorphology Global navigation satellite system Global positioning systems GPS Interferometric synthetic aperture radar Kalman filters Landslides Landslides & mudslides Line of sight Monitoring Radar Radar corner reflectors Reflectors Satellite observation Satellites Sediments Software |
title | Monitoring Strategy of Geological Hazards Using Integrated Three-dimensional InSAR and GNSS Technologies with Case Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A24%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20Strategy%20of%20Geological%20Hazards%20Using%20Integrated%20Three-dimensional%20InSAR%20and%20GNSS%20Technologies%20with%20Case%20Study&rft.jtitle=Periodica%20polytechnica.%20Civil%20engineering.%20Bauingenieurwesen&rft.au=B%C3%A1nyai,%20L%C3%A1szl%C3%B3&rft.date=2023-10-01&rft.volume=67&rft.issue=4&rft.spage=992&rft.pages=992-&rft.issn=0553-6626&rft.eissn=1587-3773&rft_id=info:doi/10.3311/PPci.20009&rft_dat=%3Cproquest_cross%3E2862678535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2862678535&rft_id=info:pmid/&rfr_iscdi=true |