Neural adaptive robust control for MEMS gyroscope with output constraints
A neural adaptive robust control method is proposed for the desired tracking of micro-electro-mechanical system (MEMS) triaxial gyroscope. In this work, input constraints and external disturbance are taken into account, and a barrier Lyapunov function (BLF) is used to ensure that the constraints are...
Gespeichert in:
Veröffentlicht in: | Telecommunication systems 2023-10, Vol.84 (2), p.203-213 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 213 |
---|---|
container_issue | 2 |
container_start_page | 203 |
container_title | Telecommunication systems |
container_volume | 84 |
creator | Liu, Shangbo Lian, Baowang Dan, Zesheng |
description | A neural adaptive robust control method is proposed for the desired tracking of micro-electro-mechanical system (MEMS) triaxial gyroscope. In this work, input constraints and external disturbance are taken into account, and a barrier Lyapunov function (BLF) is used to ensure that the constraints are not violated and that tracking performance is achieved. In the presented control approach, RBFNNs with a non-zero parameter are employed to approximate the lumped uncertainties of the system, where the approximation precision can be modified online by the provided adaptive laws in the control strategy. All of the signals in the closed-loop system are uniformly finally bounded (UUB) thanks to the designed control mechanism, which may overcome the limitation of the finite universal approximation domain. The effectiveness of the suggested control is demonstrated by the comparison of simulation results. |
doi_str_mv | 10.1007/s11235-023-01047-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2862667821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2862667821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-93fe78fa504af15efe5ec37cfa47bffb7e9c2ed100b85a2338a87f7fabb9da483</originalsourceid><addsrcrecordid>eNp9kL1OAzEQhC0EEiHwAlSWqA3-PdsligJEClAAteW72OGicD5sHyhvj5NDoqPaLeabnR0ALgm-JhjLm0QIZQJhyhAmmEukj8CECEmR5oIclx0Thbiq-Ck4S2mD8R7TE7B4ckO0W2hXts_tl4Mx1EPKsAldjmELfYjwcf74Ate7GFITege_2_wOw5D74SBLOdq2y-kcnHi7Te7id07B2938dfaAls_3i9ntEjVU4ow0804qbwXm1hPhvBOuYbLxlsva-1o63VC3KvFqJSxlTFklvfS2rvXKcsWm4Gr07WP4HFzKZhOG2JWThqqKVpVUlBQVHVVNiZ2i86aP7YeNO0Ow2f9uxspMqcwcKjO6QGyEUhF3axf_rP-hfgD7f3BU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862667821</pqid></control><display><type>article</type><title>Neural adaptive robust control for MEMS gyroscope with output constraints</title><source>Springer Nature - Complete Springer Journals</source><creator>Liu, Shangbo ; Lian, Baowang ; Dan, Zesheng</creator><creatorcontrib>Liu, Shangbo ; Lian, Baowang ; Dan, Zesheng</creatorcontrib><description>A neural adaptive robust control method is proposed for the desired tracking of micro-electro-mechanical system (MEMS) triaxial gyroscope. In this work, input constraints and external disturbance are taken into account, and a barrier Lyapunov function (BLF) is used to ensure that the constraints are not violated and that tracking performance is achieved. In the presented control approach, RBFNNs with a non-zero parameter are employed to approximate the lumped uncertainties of the system, where the approximation precision can be modified online by the provided adaptive laws in the control strategy. All of the signals in the closed-loop system are uniformly finally bounded (UUB) thanks to the designed control mechanism, which may overcome the limitation of the finite universal approximation domain. The effectiveness of the suggested control is demonstrated by the comparison of simulation results.</description><identifier>ISSN: 1018-4864</identifier><identifier>EISSN: 1572-9451</identifier><identifier>DOI: 10.1007/s11235-023-01047-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptive control ; Approximation ; Artificial Intelligence ; Business and Management ; Closed loops ; Computer Communication Networks ; Control methods ; Design ; Feedback control ; Gyroscopes ; IT in Business ; Liapunov functions ; Mathematical analysis ; Microelectromechanical systems ; Neural networks ; Probability Theory and Stochastic Processes ; Robust control ; Telecommunications systems ; Tracking ; Velocity</subject><ispartof>Telecommunication systems, 2023-10, Vol.84 (2), p.203-213</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-93fe78fa504af15efe5ec37cfa47bffb7e9c2ed100b85a2338a87f7fabb9da483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11235-023-01047-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11235-023-01047-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Liu, Shangbo</creatorcontrib><creatorcontrib>Lian, Baowang</creatorcontrib><creatorcontrib>Dan, Zesheng</creatorcontrib><title>Neural adaptive robust control for MEMS gyroscope with output constraints</title><title>Telecommunication systems</title><addtitle>Telecommun Syst</addtitle><description>A neural adaptive robust control method is proposed for the desired tracking of micro-electro-mechanical system (MEMS) triaxial gyroscope. In this work, input constraints and external disturbance are taken into account, and a barrier Lyapunov function (BLF) is used to ensure that the constraints are not violated and that tracking performance is achieved. In the presented control approach, RBFNNs with a non-zero parameter are employed to approximate the lumped uncertainties of the system, where the approximation precision can be modified online by the provided adaptive laws in the control strategy. All of the signals in the closed-loop system are uniformly finally bounded (UUB) thanks to the designed control mechanism, which may overcome the limitation of the finite universal approximation domain. The effectiveness of the suggested control is demonstrated by the comparison of simulation results.</description><subject>Adaptive control</subject><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Business and Management</subject><subject>Closed loops</subject><subject>Computer Communication Networks</subject><subject>Control methods</subject><subject>Design</subject><subject>Feedback control</subject><subject>Gyroscopes</subject><subject>IT in Business</subject><subject>Liapunov functions</subject><subject>Mathematical analysis</subject><subject>Microelectromechanical systems</subject><subject>Neural networks</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Robust control</subject><subject>Telecommunications systems</subject><subject>Tracking</subject><subject>Velocity</subject><issn>1018-4864</issn><issn>1572-9451</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kL1OAzEQhC0EEiHwAlSWqA3-PdsligJEClAAteW72OGicD5sHyhvj5NDoqPaLeabnR0ALgm-JhjLm0QIZQJhyhAmmEukj8CECEmR5oIclx0Thbiq-Ck4S2mD8R7TE7B4ckO0W2hXts_tl4Mx1EPKsAldjmELfYjwcf74Ate7GFITege_2_wOw5D74SBLOdq2y-kcnHi7Te7id07B2938dfaAls_3i9ntEjVU4ow0804qbwXm1hPhvBOuYbLxlsva-1o63VC3KvFqJSxlTFklvfS2rvXKcsWm4Gr07WP4HFzKZhOG2JWThqqKVpVUlBQVHVVNiZ2i86aP7YeNO0Ow2f9uxspMqcwcKjO6QGyEUhF3axf_rP-hfgD7f3BU</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Liu, Shangbo</creator><creator>Lian, Baowang</creator><creator>Dan, Zesheng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20231001</creationdate><title>Neural adaptive robust control for MEMS gyroscope with output constraints</title><author>Liu, Shangbo ; Lian, Baowang ; Dan, Zesheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-93fe78fa504af15efe5ec37cfa47bffb7e9c2ed100b85a2338a87f7fabb9da483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive control</topic><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Business and Management</topic><topic>Closed loops</topic><topic>Computer Communication Networks</topic><topic>Control methods</topic><topic>Design</topic><topic>Feedback control</topic><topic>Gyroscopes</topic><topic>IT in Business</topic><topic>Liapunov functions</topic><topic>Mathematical analysis</topic><topic>Microelectromechanical systems</topic><topic>Neural networks</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Robust control</topic><topic>Telecommunications systems</topic><topic>Tracking</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shangbo</creatorcontrib><creatorcontrib>Lian, Baowang</creatorcontrib><creatorcontrib>Dan, Zesheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Telecommunication systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shangbo</au><au>Lian, Baowang</au><au>Dan, Zesheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural adaptive robust control for MEMS gyroscope with output constraints</atitle><jtitle>Telecommunication systems</jtitle><stitle>Telecommun Syst</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>84</volume><issue>2</issue><spage>203</spage><epage>213</epage><pages>203-213</pages><issn>1018-4864</issn><eissn>1572-9451</eissn><abstract>A neural adaptive robust control method is proposed for the desired tracking of micro-electro-mechanical system (MEMS) triaxial gyroscope. In this work, input constraints and external disturbance are taken into account, and a barrier Lyapunov function (BLF) is used to ensure that the constraints are not violated and that tracking performance is achieved. In the presented control approach, RBFNNs with a non-zero parameter are employed to approximate the lumped uncertainties of the system, where the approximation precision can be modified online by the provided adaptive laws in the control strategy. All of the signals in the closed-loop system are uniformly finally bounded (UUB) thanks to the designed control mechanism, which may overcome the limitation of the finite universal approximation domain. The effectiveness of the suggested control is demonstrated by the comparison of simulation results.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11235-023-01047-9</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1018-4864 |
ispartof | Telecommunication systems, 2023-10, Vol.84 (2), p.203-213 |
issn | 1018-4864 1572-9451 |
language | eng |
recordid | cdi_proquest_journals_2862667821 |
source | Springer Nature - Complete Springer Journals |
subjects | Adaptive control Approximation Artificial Intelligence Business and Management Closed loops Computer Communication Networks Control methods Design Feedback control Gyroscopes IT in Business Liapunov functions Mathematical analysis Microelectromechanical systems Neural networks Probability Theory and Stochastic Processes Robust control Telecommunications systems Tracking Velocity |
title | Neural adaptive robust control for MEMS gyroscope with output constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A36%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20adaptive%20robust%20control%20for%20MEMS%20gyroscope%20with%20output%20constraints&rft.jtitle=Telecommunication%20systems&rft.au=Liu,%20Shangbo&rft.date=2023-10-01&rft.volume=84&rft.issue=2&rft.spage=203&rft.epage=213&rft.pages=203-213&rft.issn=1018-4864&rft.eissn=1572-9451&rft_id=info:doi/10.1007/s11235-023-01047-9&rft_dat=%3Cproquest_cross%3E2862667821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2862667821&rft_id=info:pmid/&rfr_iscdi=true |