Testing properties of distributions in the streaming model

We study distribution testing in the standard access model and the conditional access model when the memory available to the testing algorithm is bounded. In both scenarios, the samples appear in an online fashion and the goal is to test the properties of distribution using an optimal number of samp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-09
Hauptverfasser: Sampriti Roy, Vasudev, Yadu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sampriti Roy
Vasudev, Yadu
description We study distribution testing in the standard access model and the conditional access model when the memory available to the testing algorithm is bounded. In both scenarios, the samples appear in an online fashion and the goal is to test the properties of distribution using an optimal number of samples subject to a memory constraint on how many samples can be stored at a given time. First, we provide a trade-off between the sample complexity and the space complexity for testing identity when the samples are drawn according to the conditional access oracle. We then show that we can learn a succinct representation of a monotone distribution efficiently with a memory constraint on the number of samples that are stored that is almost optimal. We also show that the algorithm for monotone distributions can be extended to a larger class of decomposable distributions.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2862630407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2862630407</sourcerecordid><originalsourceid>FETCH-proquest_journals_28626304073</originalsourceid><addsrcrecordid>eNqNjEEKwjAQRYMgWLR3CLguxEmbFreieIDuS6VTndImNZPc3wgewNWH9x9vIzLQ-lQ0JcBO5MyTUgpMDVWlM3FukQPZp1y9W9EHQpZulANx8PSIgZxlSVaGF8qEsF--8uIGnA9iO_YzY_7bvTjeru3lXqTUO6ZsN7nobbo6aAwYrUpV6_-sDxS9N3E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862630407</pqid></control><display><type>article</type><title>Testing properties of distributions in the streaming model</title><source>Free E- Journals</source><creator>Sampriti Roy ; Vasudev, Yadu</creator><creatorcontrib>Sampriti Roy ; Vasudev, Yadu</creatorcontrib><description>We study distribution testing in the standard access model and the conditional access model when the memory available to the testing algorithm is bounded. In both scenarios, the samples appear in an online fashion and the goal is to test the properties of distribution using an optimal number of samples subject to a memory constraint on how many samples can be stored at a given time. First, we provide a trade-off between the sample complexity and the space complexity for testing identity when the samples are drawn according to the conditional access oracle. We then show that we can learn a succinct representation of a monotone distribution efficiently with a memory constraint on the number of samples that are stored that is almost optimal. We also show that the algorithm for monotone distributions can be extended to a larger class of decomposable distributions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Complexity ; Conditional access</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Sampriti Roy</creatorcontrib><creatorcontrib>Vasudev, Yadu</creatorcontrib><title>Testing properties of distributions in the streaming model</title><title>arXiv.org</title><description>We study distribution testing in the standard access model and the conditional access model when the memory available to the testing algorithm is bounded. In both scenarios, the samples appear in an online fashion and the goal is to test the properties of distribution using an optimal number of samples subject to a memory constraint on how many samples can be stored at a given time. First, we provide a trade-off between the sample complexity and the space complexity for testing identity when the samples are drawn according to the conditional access oracle. We then show that we can learn a succinct representation of a monotone distribution efficiently with a memory constraint on the number of samples that are stored that is almost optimal. We also show that the algorithm for monotone distributions can be extended to a larger class of decomposable distributions.</description><subject>Algorithms</subject><subject>Complexity</subject><subject>Conditional access</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjEEKwjAQRYMgWLR3CLguxEmbFreieIDuS6VTndImNZPc3wgewNWH9x9vIzLQ-lQ0JcBO5MyTUgpMDVWlM3FukQPZp1y9W9EHQpZulANx8PSIgZxlSVaGF8qEsF--8uIGnA9iO_YzY_7bvTjeru3lXqTUO6ZsN7nobbo6aAwYrUpV6_-sDxS9N3E</recordid><startdate>20230906</startdate><enddate>20230906</enddate><creator>Sampriti Roy</creator><creator>Vasudev, Yadu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230906</creationdate><title>Testing properties of distributions in the streaming model</title><author>Sampriti Roy ; Vasudev, Yadu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28626304073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Complexity</topic><topic>Conditional access</topic><toplevel>online_resources</toplevel><creatorcontrib>Sampriti Roy</creatorcontrib><creatorcontrib>Vasudev, Yadu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sampriti Roy</au><au>Vasudev, Yadu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Testing properties of distributions in the streaming model</atitle><jtitle>arXiv.org</jtitle><date>2023-09-06</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We study distribution testing in the standard access model and the conditional access model when the memory available to the testing algorithm is bounded. In both scenarios, the samples appear in an online fashion and the goal is to test the properties of distribution using an optimal number of samples subject to a memory constraint on how many samples can be stored at a given time. First, we provide a trade-off between the sample complexity and the space complexity for testing identity when the samples are drawn according to the conditional access oracle. We then show that we can learn a succinct representation of a monotone distribution efficiently with a memory constraint on the number of samples that are stored that is almost optimal. We also show that the algorithm for monotone distributions can be extended to a larger class of decomposable distributions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2862630407
source Free E- Journals
subjects Algorithms
Complexity
Conditional access
title Testing properties of distributions in the streaming model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A01%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Testing%20properties%20of%20distributions%20in%20the%20streaming%20model&rft.jtitle=arXiv.org&rft.au=Sampriti%20Roy&rft.date=2023-09-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2862630407%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2862630407&rft_id=info:pmid/&rfr_iscdi=true