StreamBed: capacity planning for stream processing

StreamBed is a capacity planning system for stream processing. It predicts, ahead of any production deployment, the resources that a query will require to process an incoming data rate sustainably, and the appropriate configuration of these resources. StreamBed builds a capacity planning model by pi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-09
Hauptverfasser: Rosinosky, Guillaume, Schmitz, Donatien, Rivière, Etienne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Rosinosky, Guillaume
Schmitz, Donatien
Rivière, Etienne
description StreamBed is a capacity planning system for stream processing. It predicts, ahead of any production deployment, the resources that a query will require to process an incoming data rate sustainably, and the appropriate configuration of these resources. StreamBed builds a capacity planning model by piloting a series of runs of the target query in a small-scale, controlled testbed. We implement StreamBed for the popular Flink DSP engine. Our evaluation with large-scale queries of the Nexmark benchmark demonstrates that StreamBed can effectively and accurately predict capacity requirements for jobs spanning more than 1,000 cores using a testbed of only 48 cores.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2862629652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2862629652</sourcerecordid><originalsourceid>FETCH-proquest_journals_28626296523</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCi4pSk3MdUpNsVJITixITM4sqVQoyEnMy8vMS1dIyy9SKAYrUCgoyk9OLS4GivIwsKYl5hSn8kJpbgZlN9cQZw9doJLC0tTikvis_NKiPKBUvJGFmZGZkaWZqZExcaoA8i80HQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862629652</pqid></control><display><type>article</type><title>StreamBed: capacity planning for stream processing</title><source>Free E- Journals</source><creator>Rosinosky, Guillaume ; Schmitz, Donatien ; Rivière, Etienne</creator><creatorcontrib>Rosinosky, Guillaume ; Schmitz, Donatien ; Rivière, Etienne</creatorcontrib><description>StreamBed is a capacity planning system for stream processing. It predicts, ahead of any production deployment, the resources that a query will require to process an incoming data rate sustainably, and the appropriate configuration of these resources. StreamBed builds a capacity planning model by piloting a series of runs of the target query in a small-scale, controlled testbed. We implement StreamBed for the popular Flink DSP engine. Our evaluation with large-scale queries of the Nexmark benchmark demonstrates that StreamBed can effectively and accurately predict capacity requirements for jobs spanning more than 1,000 cores using a testbed of only 48 cores.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Streambeds ; Test stands</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Rosinosky, Guillaume</creatorcontrib><creatorcontrib>Schmitz, Donatien</creatorcontrib><creatorcontrib>Rivière, Etienne</creatorcontrib><title>StreamBed: capacity planning for stream processing</title><title>arXiv.org</title><description>StreamBed is a capacity planning system for stream processing. It predicts, ahead of any production deployment, the resources that a query will require to process an incoming data rate sustainably, and the appropriate configuration of these resources. StreamBed builds a capacity planning model by piloting a series of runs of the target query in a small-scale, controlled testbed. We implement StreamBed for the popular Flink DSP engine. Our evaluation with large-scale queries of the Nexmark benchmark demonstrates that StreamBed can effectively and accurately predict capacity requirements for jobs spanning more than 1,000 cores using a testbed of only 48 cores.</description><subject>Streambeds</subject><subject>Test stands</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCi4pSk3MdUpNsVJITixITM4sqVQoyEnMy8vMS1dIyy9SKAYrUCgoyk9OLS4GivIwsKYl5hSn8kJpbgZlN9cQZw9doJLC0tTikvis_NKiPKBUvJGFmZGZkaWZqZExcaoA8i80HQ</recordid><startdate>20230908</startdate><enddate>20230908</enddate><creator>Rosinosky, Guillaume</creator><creator>Schmitz, Donatien</creator><creator>Rivière, Etienne</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230908</creationdate><title>StreamBed: capacity planning for stream processing</title><author>Rosinosky, Guillaume ; Schmitz, Donatien ; Rivière, Etienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28626296523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Streambeds</topic><topic>Test stands</topic><toplevel>online_resources</toplevel><creatorcontrib>Rosinosky, Guillaume</creatorcontrib><creatorcontrib>Schmitz, Donatien</creatorcontrib><creatorcontrib>Rivière, Etienne</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosinosky, Guillaume</au><au>Schmitz, Donatien</au><au>Rivière, Etienne</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>StreamBed: capacity planning for stream processing</atitle><jtitle>arXiv.org</jtitle><date>2023-09-08</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>StreamBed is a capacity planning system for stream processing. It predicts, ahead of any production deployment, the resources that a query will require to process an incoming data rate sustainably, and the appropriate configuration of these resources. StreamBed builds a capacity planning model by piloting a series of runs of the target query in a small-scale, controlled testbed. We implement StreamBed for the popular Flink DSP engine. Our evaluation with large-scale queries of the Nexmark benchmark demonstrates that StreamBed can effectively and accurately predict capacity requirements for jobs spanning more than 1,000 cores using a testbed of only 48 cores.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2862629652
source Free E- Journals
subjects Streambeds
Test stands
title StreamBed: capacity planning for stream processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A09%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=StreamBed:%20capacity%20planning%20for%20stream%20processing&rft.jtitle=arXiv.org&rft.au=Rosinosky,%20Guillaume&rft.date=2023-09-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2862629652%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2862629652&rft_id=info:pmid/&rfr_iscdi=true