A note on 2-odd labeling of graphs
A graph G=(V(G), E(G)) is a 2−odd graph if there exists an injective function f: V(G)→Z (the set of all integers) such that for any two adjacent vertices x and y, the integer | f(x) – f(y) | is either odd or exactly 2. So G is a 2−odd graph if and only if there exists 2−odd labeling of G. In this pa...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A graph G=(V(G), E(G)) is a 2−odd graph if there exists an injective function f: V(G)→Z (the set of all integers) such that for any two adjacent vertices x and y, the integer | f(x) – f(y) | is either odd or exactly 2. So G is a 2−odd graph if and only if there exists 2−odd labeling of G. In this paper, we derive 2−odd labeling of some special graphs such as triangular snake graph Tn, double triangular snake graph DTn, triple triangular snake graph TTn, and alternate triangular snake graph ATn. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/5.0170322 |