Ball Lens‐Assisted Cellphone Imaging with Submicron Resolution
One of the most significant developments in life sciences—the discovery of bacteria and protists—was accomplished by Antoni van Leeuwenhoek in the 17 th century using a single ball lens microscope. It is shown that the full potential of single lens designs can be realized in a contact mode of imagin...
Gespeichert in:
Veröffentlicht in: | Laser & photonics reviews 2023-09, Vol.17 (9) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Laser & photonics reviews |
container_volume | 17 |
creator | Jin, Boya Jean, Amstrong R. Maslov, Alexey V. Astratov, Vasily N. |
description | One of the most significant developments in life sciences—the discovery of bacteria and protists—was accomplished by Antoni van Leeuwenhoek in the 17 th century using a single ball lens microscope. It is shown that the full potential of single lens designs can be realized in a contact mode of imaging by ball lenses with a refractive index of n ≈ 2, suitable for developing compact cellphone‐based microscopes. The quality of imaging is comparable to basic compound microscopes, but with a narrower field‐of‐view, and is demonstrated for various biomedical samples. The maximal magnification ( M > 50) with the highest resolution (≈0.66 µm at λ = 589 nm) is achieved for imaging of nanoplasmonic structures by ball lenses made from LASFN35 glass, the index of which is tuned near n = 2 using chromatic dispersion. Due to limitations of geometrical optics, the imaging theory is developed based on an exact numerical solution of the Maxwell equations, including spherical aberration and the nearfield coupling of a point source. The modeling is performed using multiscale analysis: from the field propagation inside ball lenses with diameters 30 |
doi_str_mv | 10.1002/lpor.202300146 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2862616405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2862616405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-75921e446f3f515f13912033b8a8ab464d4ff2618a017e38c0941016060415ab3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqVw5RyJc8Ku7bjOjRJRqFQJiZ-z5bR2m8qNg50IceMReEaehFRF3cvsYWZ39BFyjZAhAL11rQ8ZBcoAkIsTMkIpWCplUZwedwnn5CLGLUA-jBiRu3vtXLIwTfz9_pnGWMfOrJLSONdufGOS-U6v62adfNbdJnntq129DL5JXkz0ru9q31ySM6tdNFf_Oibvs4e38ildPD_Oy-kiXTKYdOkkLygazoVlNsfcIiuQAmOV1FJXXPAVt5YKlBpwYphcQsERUIAAjrmu2JjcHO62wX_0JnZq6_vQDC8VlWJICg754MoOrqFljMFY1YZ6p8OXQlB7SmpPSR0psT9g_lnT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862616405</pqid></control><display><type>article</type><title>Ball Lens‐Assisted Cellphone Imaging with Submicron Resolution</title><source>Wiley Online Library</source><creator>Jin, Boya ; Jean, Amstrong R. ; Maslov, Alexey V. ; Astratov, Vasily N.</creator><creatorcontrib>Jin, Boya ; Jean, Amstrong R. ; Maslov, Alexey V. ; Astratov, Vasily N.</creatorcontrib><description>One of the most significant developments in life sciences—the discovery of bacteria and protists—was accomplished by Antoni van Leeuwenhoek in the 17 th century using a single ball lens microscope. It is shown that the full potential of single lens designs can be realized in a contact mode of imaging by ball lenses with a refractive index of n ≈ 2, suitable for developing compact cellphone‐based microscopes. The quality of imaging is comparable to basic compound microscopes, but with a narrower field‐of‐view, and is demonstrated for various biomedical samples. The maximal magnification ( M > 50) with the highest resolution (≈0.66 µm at λ = 589 nm) is achieved for imaging of nanoplasmonic structures by ball lenses made from LASFN35 glass, the index of which is tuned near n = 2 using chromatic dispersion. Due to limitations of geometrical optics, the imaging theory is developed based on an exact numerical solution of the Maxwell equations, including spherical aberration and the nearfield coupling of a point source. The modeling is performed using multiscale analysis: from the field propagation inside ball lenses with diameters 30 < D / λ < 4000 to the formation of the diffracted field at distances of ≈10 5 λ . It is shown that such imaging enables the transition from pixel‐ to diffraction‐limited resolution in cellphone microscopy.</description><identifier>ISSN: 1863-8880</identifier><identifier>EISSN: 1863-8899</identifier><identifier>DOI: 10.1002/lpor.202300146</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cellular telephones ; Diffraction ; Geometrical optics ; Imaging ; Lenses ; Maxwell's equations ; Microscopes ; Multiscale analysis ; Point sources ; Refractivity</subject><ispartof>Laser & photonics reviews, 2023-09, Vol.17 (9)</ispartof><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-75921e446f3f515f13912033b8a8ab464d4ff2618a017e38c0941016060415ab3</citedby><cites>FETCH-LOGICAL-c307t-75921e446f3f515f13912033b8a8ab464d4ff2618a017e38c0941016060415ab3</cites><orcidid>0000-0002-0868-2574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jin, Boya</creatorcontrib><creatorcontrib>Jean, Amstrong R.</creatorcontrib><creatorcontrib>Maslov, Alexey V.</creatorcontrib><creatorcontrib>Astratov, Vasily N.</creatorcontrib><title>Ball Lens‐Assisted Cellphone Imaging with Submicron Resolution</title><title>Laser & photonics reviews</title><description>One of the most significant developments in life sciences—the discovery of bacteria and protists—was accomplished by Antoni van Leeuwenhoek in the 17 th century using a single ball lens microscope. It is shown that the full potential of single lens designs can be realized in a contact mode of imaging by ball lenses with a refractive index of n ≈ 2, suitable for developing compact cellphone‐based microscopes. The quality of imaging is comparable to basic compound microscopes, but with a narrower field‐of‐view, and is demonstrated for various biomedical samples. The maximal magnification ( M > 50) with the highest resolution (≈0.66 µm at λ = 589 nm) is achieved for imaging of nanoplasmonic structures by ball lenses made from LASFN35 glass, the index of which is tuned near n = 2 using chromatic dispersion. Due to limitations of geometrical optics, the imaging theory is developed based on an exact numerical solution of the Maxwell equations, including spherical aberration and the nearfield coupling of a point source. The modeling is performed using multiscale analysis: from the field propagation inside ball lenses with diameters 30 < D / λ < 4000 to the formation of the diffracted field at distances of ≈10 5 λ . It is shown that such imaging enables the transition from pixel‐ to diffraction‐limited resolution in cellphone microscopy.</description><subject>Cellular telephones</subject><subject>Diffraction</subject><subject>Geometrical optics</subject><subject>Imaging</subject><subject>Lenses</subject><subject>Maxwell's equations</subject><subject>Microscopes</subject><subject>Multiscale analysis</subject><subject>Point sources</subject><subject>Refractivity</subject><issn>1863-8880</issn><issn>1863-8899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqVw5RyJc8Ku7bjOjRJRqFQJiZ-z5bR2m8qNg50IceMReEaehFRF3cvsYWZ39BFyjZAhAL11rQ8ZBcoAkIsTMkIpWCplUZwedwnn5CLGLUA-jBiRu3vtXLIwTfz9_pnGWMfOrJLSONdufGOS-U6v62adfNbdJnntq129DL5JXkz0ru9q31ySM6tdNFf_Oibvs4e38ildPD_Oy-kiXTKYdOkkLygazoVlNsfcIiuQAmOV1FJXXPAVt5YKlBpwYphcQsERUIAAjrmu2JjcHO62wX_0JnZq6_vQDC8VlWJICg754MoOrqFljMFY1YZ6p8OXQlB7SmpPSR0psT9g_lnT</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Jin, Boya</creator><creator>Jean, Amstrong R.</creator><creator>Maslov, Alexey V.</creator><creator>Astratov, Vasily N.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0868-2574</orcidid></search><sort><creationdate>202309</creationdate><title>Ball Lens‐Assisted Cellphone Imaging with Submicron Resolution</title><author>Jin, Boya ; Jean, Amstrong R. ; Maslov, Alexey V. ; Astratov, Vasily N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-75921e446f3f515f13912033b8a8ab464d4ff2618a017e38c0941016060415ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cellular telephones</topic><topic>Diffraction</topic><topic>Geometrical optics</topic><topic>Imaging</topic><topic>Lenses</topic><topic>Maxwell's equations</topic><topic>Microscopes</topic><topic>Multiscale analysis</topic><topic>Point sources</topic><topic>Refractivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Boya</creatorcontrib><creatorcontrib>Jean, Amstrong R.</creatorcontrib><creatorcontrib>Maslov, Alexey V.</creatorcontrib><creatorcontrib>Astratov, Vasily N.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Laser & photonics reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Boya</au><au>Jean, Amstrong R.</au><au>Maslov, Alexey V.</au><au>Astratov, Vasily N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ball Lens‐Assisted Cellphone Imaging with Submicron Resolution</atitle><jtitle>Laser & photonics reviews</jtitle><date>2023-09</date><risdate>2023</risdate><volume>17</volume><issue>9</issue><issn>1863-8880</issn><eissn>1863-8899</eissn><abstract>One of the most significant developments in life sciences—the discovery of bacteria and protists—was accomplished by Antoni van Leeuwenhoek in the 17 th century using a single ball lens microscope. It is shown that the full potential of single lens designs can be realized in a contact mode of imaging by ball lenses with a refractive index of n ≈ 2, suitable for developing compact cellphone‐based microscopes. The quality of imaging is comparable to basic compound microscopes, but with a narrower field‐of‐view, and is demonstrated for various biomedical samples. The maximal magnification ( M > 50) with the highest resolution (≈0.66 µm at λ = 589 nm) is achieved for imaging of nanoplasmonic structures by ball lenses made from LASFN35 glass, the index of which is tuned near n = 2 using chromatic dispersion. Due to limitations of geometrical optics, the imaging theory is developed based on an exact numerical solution of the Maxwell equations, including spherical aberration and the nearfield coupling of a point source. The modeling is performed using multiscale analysis: from the field propagation inside ball lenses with diameters 30 < D / λ < 4000 to the formation of the diffracted field at distances of ≈10 5 λ . It is shown that such imaging enables the transition from pixel‐ to diffraction‐limited resolution in cellphone microscopy.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/lpor.202300146</doi><orcidid>https://orcid.org/0000-0002-0868-2574</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-8880 |
ispartof | Laser & photonics reviews, 2023-09, Vol.17 (9) |
issn | 1863-8880 1863-8899 |
language | eng |
recordid | cdi_proquest_journals_2862616405 |
source | Wiley Online Library |
subjects | Cellular telephones Diffraction Geometrical optics Imaging Lenses Maxwell's equations Microscopes Multiscale analysis Point sources Refractivity |
title | Ball Lens‐Assisted Cellphone Imaging with Submicron Resolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ball%20Lens%E2%80%90Assisted%20Cellphone%20Imaging%20with%20Submicron%20Resolution&rft.jtitle=Laser%20&%20photonics%20reviews&rft.au=Jin,%20Boya&rft.date=2023-09&rft.volume=17&rft.issue=9&rft.issn=1863-8880&rft.eissn=1863-8899&rft_id=info:doi/10.1002/lpor.202300146&rft_dat=%3Cproquest_cross%3E2862616405%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2862616405&rft_id=info:pmid/&rfr_iscdi=true |