Ball Lens‐Assisted Cellphone Imaging with Submicron Resolution

One of the most significant developments in life sciences—the discovery of bacteria and protists—was accomplished by Antoni van Leeuwenhoek in the 17 th century using a single ball lens microscope. It is shown that the full potential of single lens designs can be realized in a contact mode of imagin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Laser & photonics reviews 2023-09, Vol.17 (9)
Hauptverfasser: Jin, Boya, Jean, Amstrong R., Maslov, Alexey V., Astratov, Vasily N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Laser & photonics reviews
container_volume 17
creator Jin, Boya
Jean, Amstrong R.
Maslov, Alexey V.
Astratov, Vasily N.
description One of the most significant developments in life sciences—the discovery of bacteria and protists—was accomplished by Antoni van Leeuwenhoek in the 17 th century using a single ball lens microscope. It is shown that the full potential of single lens designs can be realized in a contact mode of imaging by ball lenses with a refractive index of  n ≈ 2, suitable for developing compact cellphone‐based microscopes. The quality of imaging is comparable to basic compound microscopes, but with a narrower field‐of‐view, and is demonstrated for various biomedical samples. The maximal magnification ( M  > 50) with the highest resolution (≈0.66 µm at λ = 589 nm) is achieved for imaging of nanoplasmonic structures by ball lenses made from LASFN35 glass, the index of which is tuned near n = 2 using chromatic dispersion. Due to limitations of geometrical optics, the imaging theory is developed based on an exact numerical solution of the Maxwell equations, including spherical aberration and the nearfield coupling of a point source. The modeling is performed using multiscale analysis: from the field propagation inside ball lenses with diameters 30 
doi_str_mv 10.1002/lpor.202300146
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2862616405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2862616405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-75921e446f3f515f13912033b8a8ab464d4ff2618a017e38c0941016060415ab3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqVw5RyJc8Ku7bjOjRJRqFQJiZ-z5bR2m8qNg50IceMReEaehFRF3cvsYWZ39BFyjZAhAL11rQ8ZBcoAkIsTMkIpWCplUZwedwnn5CLGLUA-jBiRu3vtXLIwTfz9_pnGWMfOrJLSONdufGOS-U6v62adfNbdJnntq129DL5JXkz0ru9q31ySM6tdNFf_Oibvs4e38ildPD_Oy-kiXTKYdOkkLygazoVlNsfcIiuQAmOV1FJXXPAVt5YKlBpwYphcQsERUIAAjrmu2JjcHO62wX_0JnZq6_vQDC8VlWJICg754MoOrqFljMFY1YZ6p8OXQlB7SmpPSR0psT9g_lnT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862616405</pqid></control><display><type>article</type><title>Ball Lens‐Assisted Cellphone Imaging with Submicron Resolution</title><source>Wiley Online Library</source><creator>Jin, Boya ; Jean, Amstrong R. ; Maslov, Alexey V. ; Astratov, Vasily N.</creator><creatorcontrib>Jin, Boya ; Jean, Amstrong R. ; Maslov, Alexey V. ; Astratov, Vasily N.</creatorcontrib><description>One of the most significant developments in life sciences—the discovery of bacteria and protists—was accomplished by Antoni van Leeuwenhoek in the 17 th century using a single ball lens microscope. It is shown that the full potential of single lens designs can be realized in a contact mode of imaging by ball lenses with a refractive index of  n ≈ 2, suitable for developing compact cellphone‐based microscopes. The quality of imaging is comparable to basic compound microscopes, but with a narrower field‐of‐view, and is demonstrated for various biomedical samples. The maximal magnification ( M  &gt; 50) with the highest resolution (≈0.66 µm at λ = 589 nm) is achieved for imaging of nanoplasmonic structures by ball lenses made from LASFN35 glass, the index of which is tuned near n = 2 using chromatic dispersion. Due to limitations of geometrical optics, the imaging theory is developed based on an exact numerical solution of the Maxwell equations, including spherical aberration and the nearfield coupling of a point source. The modeling is performed using multiscale analysis: from the field propagation inside ball lenses with diameters 30 &lt;  D / λ  &lt; 4000 to the formation of the diffracted field at distances of ≈10 5 λ . It is shown that such imaging enables the transition from pixel‐ to diffraction‐limited resolution in cellphone microscopy.</description><identifier>ISSN: 1863-8880</identifier><identifier>EISSN: 1863-8899</identifier><identifier>DOI: 10.1002/lpor.202300146</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cellular telephones ; Diffraction ; Geometrical optics ; Imaging ; Lenses ; Maxwell's equations ; Microscopes ; Multiscale analysis ; Point sources ; Refractivity</subject><ispartof>Laser &amp; photonics reviews, 2023-09, Vol.17 (9)</ispartof><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-75921e446f3f515f13912033b8a8ab464d4ff2618a017e38c0941016060415ab3</citedby><cites>FETCH-LOGICAL-c307t-75921e446f3f515f13912033b8a8ab464d4ff2618a017e38c0941016060415ab3</cites><orcidid>0000-0002-0868-2574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jin, Boya</creatorcontrib><creatorcontrib>Jean, Amstrong R.</creatorcontrib><creatorcontrib>Maslov, Alexey V.</creatorcontrib><creatorcontrib>Astratov, Vasily N.</creatorcontrib><title>Ball Lens‐Assisted Cellphone Imaging with Submicron Resolution</title><title>Laser &amp; photonics reviews</title><description>One of the most significant developments in life sciences—the discovery of bacteria and protists—was accomplished by Antoni van Leeuwenhoek in the 17 th century using a single ball lens microscope. It is shown that the full potential of single lens designs can be realized in a contact mode of imaging by ball lenses with a refractive index of  n ≈ 2, suitable for developing compact cellphone‐based microscopes. The quality of imaging is comparable to basic compound microscopes, but with a narrower field‐of‐view, and is demonstrated for various biomedical samples. The maximal magnification ( M  &gt; 50) with the highest resolution (≈0.66 µm at λ = 589 nm) is achieved for imaging of nanoplasmonic structures by ball lenses made from LASFN35 glass, the index of which is tuned near n = 2 using chromatic dispersion. Due to limitations of geometrical optics, the imaging theory is developed based on an exact numerical solution of the Maxwell equations, including spherical aberration and the nearfield coupling of a point source. The modeling is performed using multiscale analysis: from the field propagation inside ball lenses with diameters 30 &lt;  D / λ  &lt; 4000 to the formation of the diffracted field at distances of ≈10 5 λ . It is shown that such imaging enables the transition from pixel‐ to diffraction‐limited resolution in cellphone microscopy.</description><subject>Cellular telephones</subject><subject>Diffraction</subject><subject>Geometrical optics</subject><subject>Imaging</subject><subject>Lenses</subject><subject>Maxwell's equations</subject><subject>Microscopes</subject><subject>Multiscale analysis</subject><subject>Point sources</subject><subject>Refractivity</subject><issn>1863-8880</issn><issn>1863-8899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqVw5RyJc8Ku7bjOjRJRqFQJiZ-z5bR2m8qNg50IceMReEaehFRF3cvsYWZ39BFyjZAhAL11rQ8ZBcoAkIsTMkIpWCplUZwedwnn5CLGLUA-jBiRu3vtXLIwTfz9_pnGWMfOrJLSONdufGOS-U6v62adfNbdJnntq129DL5JXkz0ru9q31ySM6tdNFf_Oibvs4e38ildPD_Oy-kiXTKYdOkkLygazoVlNsfcIiuQAmOV1FJXXPAVt5YKlBpwYphcQsERUIAAjrmu2JjcHO62wX_0JnZq6_vQDC8VlWJICg754MoOrqFljMFY1YZ6p8OXQlB7SmpPSR0psT9g_lnT</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Jin, Boya</creator><creator>Jean, Amstrong R.</creator><creator>Maslov, Alexey V.</creator><creator>Astratov, Vasily N.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0868-2574</orcidid></search><sort><creationdate>202309</creationdate><title>Ball Lens‐Assisted Cellphone Imaging with Submicron Resolution</title><author>Jin, Boya ; Jean, Amstrong R. ; Maslov, Alexey V. ; Astratov, Vasily N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-75921e446f3f515f13912033b8a8ab464d4ff2618a017e38c0941016060415ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cellular telephones</topic><topic>Diffraction</topic><topic>Geometrical optics</topic><topic>Imaging</topic><topic>Lenses</topic><topic>Maxwell's equations</topic><topic>Microscopes</topic><topic>Multiscale analysis</topic><topic>Point sources</topic><topic>Refractivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Boya</creatorcontrib><creatorcontrib>Jean, Amstrong R.</creatorcontrib><creatorcontrib>Maslov, Alexey V.</creatorcontrib><creatorcontrib>Astratov, Vasily N.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Laser &amp; photonics reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Boya</au><au>Jean, Amstrong R.</au><au>Maslov, Alexey V.</au><au>Astratov, Vasily N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ball Lens‐Assisted Cellphone Imaging with Submicron Resolution</atitle><jtitle>Laser &amp; photonics reviews</jtitle><date>2023-09</date><risdate>2023</risdate><volume>17</volume><issue>9</issue><issn>1863-8880</issn><eissn>1863-8899</eissn><abstract>One of the most significant developments in life sciences—the discovery of bacteria and protists—was accomplished by Antoni van Leeuwenhoek in the 17 th century using a single ball lens microscope. It is shown that the full potential of single lens designs can be realized in a contact mode of imaging by ball lenses with a refractive index of  n ≈ 2, suitable for developing compact cellphone‐based microscopes. The quality of imaging is comparable to basic compound microscopes, but with a narrower field‐of‐view, and is demonstrated for various biomedical samples. The maximal magnification ( M  &gt; 50) with the highest resolution (≈0.66 µm at λ = 589 nm) is achieved for imaging of nanoplasmonic structures by ball lenses made from LASFN35 glass, the index of which is tuned near n = 2 using chromatic dispersion. Due to limitations of geometrical optics, the imaging theory is developed based on an exact numerical solution of the Maxwell equations, including spherical aberration and the nearfield coupling of a point source. The modeling is performed using multiscale analysis: from the field propagation inside ball lenses with diameters 30 &lt;  D / λ  &lt; 4000 to the formation of the diffracted field at distances of ≈10 5 λ . It is shown that such imaging enables the transition from pixel‐ to diffraction‐limited resolution in cellphone microscopy.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/lpor.202300146</doi><orcidid>https://orcid.org/0000-0002-0868-2574</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1863-8880
ispartof Laser & photonics reviews, 2023-09, Vol.17 (9)
issn 1863-8880
1863-8899
language eng
recordid cdi_proquest_journals_2862616405
source Wiley Online Library
subjects Cellular telephones
Diffraction
Geometrical optics
Imaging
Lenses
Maxwell's equations
Microscopes
Multiscale analysis
Point sources
Refractivity
title Ball Lens‐Assisted Cellphone Imaging with Submicron Resolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ball%20Lens%E2%80%90Assisted%20Cellphone%20Imaging%20with%20Submicron%20Resolution&rft.jtitle=Laser%20&%20photonics%20reviews&rft.au=Jin,%20Boya&rft.date=2023-09&rft.volume=17&rft.issue=9&rft.issn=1863-8880&rft.eissn=1863-8899&rft_id=info:doi/10.1002/lpor.202300146&rft_dat=%3Cproquest_cross%3E2862616405%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2862616405&rft_id=info:pmid/&rfr_iscdi=true