Size-dependent methanol oxidation behavior of Pd-Ag synthesized by the high-temperature shock method
Exploring the relationship between the elemental distribution and electrochemical performance of nanoparticles, and revealing the involved mechanism is essential to the design of better electrocatalysts. Herein, high-temperature shock (HTS) is used to synthesize Pd-Ag nanoparticles with controllable...
Gespeichert in:
Veröffentlicht in: | Science China materials 2023-09, Vol.66 (9), p.3555-3564 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3564 |
---|---|
container_issue | 9 |
container_start_page | 3555 |
container_title | Science China materials |
container_volume | 66 |
creator | Liu, Chang Hu, Zheng Li, Hui Qiu, Yishu Zhao, Wenbo Zhou, Wei Hu, Shi |
description | Exploring the relationship between the elemental distribution and electrochemical performance of nanoparticles, and revealing the involved mechanism is essential to the design of better electrocatalysts. Herein, high-temperature shock (HTS) is used to synthesize Pd-Ag nanoparticles with controllable sizes and mixing degree by applying different currents. Molecular dynamics is performed to simulate the structural evolution in the HTS process and establish the atomic model (Pd
x
Ag@Ag) for Pd-Ag nanoparticles, which is difficult to investigate with the conventional characterization methods. The Pd-Ag nanoparticles obtained under an applied current of 30 A exhibit the most outstanding specific activity for the methanol oxidation reaction (MOR) among all samples. By utilizing first-principles and random-walk simulation, the synergy between Pd and Ag is decoupled into the lower barrier of dehydrogenation and higher redox frequency of the Pd-Ag couple. |
doi_str_mv | 10.1007/s40843-023-2500-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2862584059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2862584059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-389dcf86c66d6e92b1d9765c331f9368b3599710c607ec24dc196361836ad95d3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWGp_gLuA62gek0yyLMUXFBTUdZhJ7nSmtpOapGL99Y6O4MrVPYvznQsfQueMXjJKy6tUUF0IQrkgXFJK5BGacGYMKSRlx0OmRhLNuTpFs5TWlFKmJGNGT5B_6j6BeNhB76HPeAu5rfqwweGj81XuQo9raKv3LkQcGvzoyXyF06HPLaSB9Lg-4CHjtlu1JMN2B7HK-wg4tcG9_swFf4ZOmmqTYPZ7p-jl5vp5cUeWD7f3i_mSOMFYJkIb7xqtnFJegeE186ZU0gnBGiOUroU0pmTUKVqC44V3zCihmBaq8kZ6MUUX4-4uhrc9pGzXYR_74aXlWnGpCyrN0GJjy8WQUoTG7mK3reLBMmq_fdrRpx182m-fVg4MH5k0dPsVxL_l_6Eva5t3zQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862584059</pqid></control><display><type>article</type><title>Size-dependent methanol oxidation behavior of Pd-Ag synthesized by the high-temperature shock method</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Chang ; Hu, Zheng ; Li, Hui ; Qiu, Yishu ; Zhao, Wenbo ; Zhou, Wei ; Hu, Shi</creator><creatorcontrib>Liu, Chang ; Hu, Zheng ; Li, Hui ; Qiu, Yishu ; Zhao, Wenbo ; Zhou, Wei ; Hu, Shi</creatorcontrib><description>Exploring the relationship between the elemental distribution and electrochemical performance of nanoparticles, and revealing the involved mechanism is essential to the design of better electrocatalysts. Herein, high-temperature shock (HTS) is used to synthesize Pd-Ag nanoparticles with controllable sizes and mixing degree by applying different currents. Molecular dynamics is performed to simulate the structural evolution in the HTS process and establish the atomic model (Pd
x
Ag@Ag) for Pd-Ag nanoparticles, which is difficult to investigate with the conventional characterization methods. The Pd-Ag nanoparticles obtained under an applied current of 30 A exhibit the most outstanding specific activity for the methanol oxidation reaction (MOR) among all samples. By utilizing first-principles and random-walk simulation, the synergy between Pd and Ag is decoupled into the lower barrier of dehydrogenation and higher redox frequency of the Pd-Ag couple.</description><identifier>ISSN: 2095-8226</identifier><identifier>EISSN: 2199-4501</identifier><identifier>DOI: 10.1007/s40843-023-2500-5</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Chemistry and Materials Science ; Chemistry/Food Science ; Controllability ; Dehydrogenation ; Electrocatalysts ; Electrochemical analysis ; First principles ; High temperature ; Materials Science ; Methanol ; Molecular dynamics ; Nanoparticles ; Oxidation ; Palladium ; Silver ; Synthesis</subject><ispartof>Science China materials, 2023-09, Vol.66 (9), p.3555-3564</ispartof><rights>Science China Press 2023</rights><rights>Science China Press 2023.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-389dcf86c66d6e92b1d9765c331f9368b3599710c607ec24dc196361836ad95d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40843-023-2500-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40843-023-2500-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Hu, Zheng</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Qiu, Yishu</creatorcontrib><creatorcontrib>Zhao, Wenbo</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Hu, Shi</creatorcontrib><title>Size-dependent methanol oxidation behavior of Pd-Ag synthesized by the high-temperature shock method</title><title>Science China materials</title><addtitle>Sci. China Mater</addtitle><description>Exploring the relationship between the elemental distribution and electrochemical performance of nanoparticles, and revealing the involved mechanism is essential to the design of better electrocatalysts. Herein, high-temperature shock (HTS) is used to synthesize Pd-Ag nanoparticles with controllable sizes and mixing degree by applying different currents. Molecular dynamics is performed to simulate the structural evolution in the HTS process and establish the atomic model (Pd
x
Ag@Ag) for Pd-Ag nanoparticles, which is difficult to investigate with the conventional characterization methods. The Pd-Ag nanoparticles obtained under an applied current of 30 A exhibit the most outstanding specific activity for the methanol oxidation reaction (MOR) among all samples. By utilizing first-principles and random-walk simulation, the synergy between Pd and Ag is decoupled into the lower barrier of dehydrogenation and higher redox frequency of the Pd-Ag couple.</description><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Controllability</subject><subject>Dehydrogenation</subject><subject>Electrocatalysts</subject><subject>Electrochemical analysis</subject><subject>First principles</subject><subject>High temperature</subject><subject>Materials Science</subject><subject>Methanol</subject><subject>Molecular dynamics</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Palladium</subject><subject>Silver</subject><subject>Synthesis</subject><issn>2095-8226</issn><issn>2199-4501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWGp_gLuA62gek0yyLMUXFBTUdZhJ7nSmtpOapGL99Y6O4MrVPYvznQsfQueMXjJKy6tUUF0IQrkgXFJK5BGacGYMKSRlx0OmRhLNuTpFs5TWlFKmJGNGT5B_6j6BeNhB76HPeAu5rfqwweGj81XuQo9raKv3LkQcGvzoyXyF06HPLaSB9Lg-4CHjtlu1JMN2B7HK-wg4tcG9_swFf4ZOmmqTYPZ7p-jl5vp5cUeWD7f3i_mSOMFYJkIb7xqtnFJegeE186ZU0gnBGiOUroU0pmTUKVqC44V3zCihmBaq8kZ6MUUX4-4uhrc9pGzXYR_74aXlWnGpCyrN0GJjy8WQUoTG7mK3reLBMmq_fdrRpx182m-fVg4MH5k0dPsVxL_l_6Eva5t3zQ</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Liu, Chang</creator><creator>Hu, Zheng</creator><creator>Li, Hui</creator><creator>Qiu, Yishu</creator><creator>Zhao, Wenbo</creator><creator>Zhou, Wei</creator><creator>Hu, Shi</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230901</creationdate><title>Size-dependent methanol oxidation behavior of Pd-Ag synthesized by the high-temperature shock method</title><author>Liu, Chang ; Hu, Zheng ; Li, Hui ; Qiu, Yishu ; Zhao, Wenbo ; Zhou, Wei ; Hu, Shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-389dcf86c66d6e92b1d9765c331f9368b3599710c607ec24dc196361836ad95d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Controllability</topic><topic>Dehydrogenation</topic><topic>Electrocatalysts</topic><topic>Electrochemical analysis</topic><topic>First principles</topic><topic>High temperature</topic><topic>Materials Science</topic><topic>Methanol</topic><topic>Molecular dynamics</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Palladium</topic><topic>Silver</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Hu, Zheng</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Qiu, Yishu</creatorcontrib><creatorcontrib>Zhao, Wenbo</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Hu, Shi</creatorcontrib><collection>CrossRef</collection><jtitle>Science China materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chang</au><au>Hu, Zheng</au><au>Li, Hui</au><au>Qiu, Yishu</au><au>Zhao, Wenbo</au><au>Zhou, Wei</au><au>Hu, Shi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size-dependent methanol oxidation behavior of Pd-Ag synthesized by the high-temperature shock method</atitle><jtitle>Science China materials</jtitle><stitle>Sci. China Mater</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>66</volume><issue>9</issue><spage>3555</spage><epage>3564</epage><pages>3555-3564</pages><issn>2095-8226</issn><eissn>2199-4501</eissn><abstract>Exploring the relationship between the elemental distribution and electrochemical performance of nanoparticles, and revealing the involved mechanism is essential to the design of better electrocatalysts. Herein, high-temperature shock (HTS) is used to synthesize Pd-Ag nanoparticles with controllable sizes and mixing degree by applying different currents. Molecular dynamics is performed to simulate the structural evolution in the HTS process and establish the atomic model (Pd
x
Ag@Ag) for Pd-Ag nanoparticles, which is difficult to investigate with the conventional characterization methods. The Pd-Ag nanoparticles obtained under an applied current of 30 A exhibit the most outstanding specific activity for the methanol oxidation reaction (MOR) among all samples. By utilizing first-principles and random-walk simulation, the synergy between Pd and Ag is decoupled into the lower barrier of dehydrogenation and higher redox frequency of the Pd-Ag couple.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s40843-023-2500-5</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-8226 |
ispartof | Science China materials, 2023-09, Vol.66 (9), p.3555-3564 |
issn | 2095-8226 2199-4501 |
language | eng |
recordid | cdi_proquest_journals_2862584059 |
source | SpringerNature Journals; Alma/SFX Local Collection |
subjects | Chemistry and Materials Science Chemistry/Food Science Controllability Dehydrogenation Electrocatalysts Electrochemical analysis First principles High temperature Materials Science Methanol Molecular dynamics Nanoparticles Oxidation Palladium Silver Synthesis |
title | Size-dependent methanol oxidation behavior of Pd-Ag synthesized by the high-temperature shock method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T07%3A33%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size-dependent%20methanol%20oxidation%20behavior%20of%20Pd-Ag%20synthesized%20by%20the%20high-temperature%20shock%20method&rft.jtitle=Science%20China%20materials&rft.au=Liu,%20Chang&rft.date=2023-09-01&rft.volume=66&rft.issue=9&rft.spage=3555&rft.epage=3564&rft.pages=3555-3564&rft.issn=2095-8226&rft.eissn=2199-4501&rft_id=info:doi/10.1007/s40843-023-2500-5&rft_dat=%3Cproquest_cross%3E2862584059%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2862584059&rft_id=info:pmid/&rfr_iscdi=true |