Size-dependent methanol oxidation behavior of Pd-Ag synthesized by the high-temperature shock method

Exploring the relationship between the elemental distribution and electrochemical performance of nanoparticles, and revealing the involved mechanism is essential to the design of better electrocatalysts. Herein, high-temperature shock (HTS) is used to synthesize Pd-Ag nanoparticles with controllable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China materials 2023-09, Vol.66 (9), p.3555-3564
Hauptverfasser: Liu, Chang, Hu, Zheng, Li, Hui, Qiu, Yishu, Zhao, Wenbo, Zhou, Wei, Hu, Shi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3564
container_issue 9
container_start_page 3555
container_title Science China materials
container_volume 66
creator Liu, Chang
Hu, Zheng
Li, Hui
Qiu, Yishu
Zhao, Wenbo
Zhou, Wei
Hu, Shi
description Exploring the relationship between the elemental distribution and electrochemical performance of nanoparticles, and revealing the involved mechanism is essential to the design of better electrocatalysts. Herein, high-temperature shock (HTS) is used to synthesize Pd-Ag nanoparticles with controllable sizes and mixing degree by applying different currents. Molecular dynamics is performed to simulate the structural evolution in the HTS process and establish the atomic model (Pd x Ag@Ag) for Pd-Ag nanoparticles, which is difficult to investigate with the conventional characterization methods. The Pd-Ag nanoparticles obtained under an applied current of 30 A exhibit the most outstanding specific activity for the methanol oxidation reaction (MOR) among all samples. By utilizing first-principles and random-walk simulation, the synergy between Pd and Ag is decoupled into the lower barrier of dehydrogenation and higher redox frequency of the Pd-Ag couple.
doi_str_mv 10.1007/s40843-023-2500-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2862584059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2862584059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-389dcf86c66d6e92b1d9765c331f9368b3599710c607ec24dc196361836ad95d3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWGp_gLuA62gek0yyLMUXFBTUdZhJ7nSmtpOapGL99Y6O4MrVPYvznQsfQueMXjJKy6tUUF0IQrkgXFJK5BGacGYMKSRlx0OmRhLNuTpFs5TWlFKmJGNGT5B_6j6BeNhB76HPeAu5rfqwweGj81XuQo9raKv3LkQcGvzoyXyF06HPLaSB9Lg-4CHjtlu1JMN2B7HK-wg4tcG9_swFf4ZOmmqTYPZ7p-jl5vp5cUeWD7f3i_mSOMFYJkIb7xqtnFJegeE186ZU0gnBGiOUroU0pmTUKVqC44V3zCihmBaq8kZ6MUUX4-4uhrc9pGzXYR_74aXlWnGpCyrN0GJjy8WQUoTG7mK3reLBMmq_fdrRpx182m-fVg4MH5k0dPsVxL_l_6Eva5t3zQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862584059</pqid></control><display><type>article</type><title>Size-dependent methanol oxidation behavior of Pd-Ag synthesized by the high-temperature shock method</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Chang ; Hu, Zheng ; Li, Hui ; Qiu, Yishu ; Zhao, Wenbo ; Zhou, Wei ; Hu, Shi</creator><creatorcontrib>Liu, Chang ; Hu, Zheng ; Li, Hui ; Qiu, Yishu ; Zhao, Wenbo ; Zhou, Wei ; Hu, Shi</creatorcontrib><description>Exploring the relationship between the elemental distribution and electrochemical performance of nanoparticles, and revealing the involved mechanism is essential to the design of better electrocatalysts. Herein, high-temperature shock (HTS) is used to synthesize Pd-Ag nanoparticles with controllable sizes and mixing degree by applying different currents. Molecular dynamics is performed to simulate the structural evolution in the HTS process and establish the atomic model (Pd x Ag@Ag) for Pd-Ag nanoparticles, which is difficult to investigate with the conventional characterization methods. The Pd-Ag nanoparticles obtained under an applied current of 30 A exhibit the most outstanding specific activity for the methanol oxidation reaction (MOR) among all samples. By utilizing first-principles and random-walk simulation, the synergy between Pd and Ag is decoupled into the lower barrier of dehydrogenation and higher redox frequency of the Pd-Ag couple.</description><identifier>ISSN: 2095-8226</identifier><identifier>EISSN: 2199-4501</identifier><identifier>DOI: 10.1007/s40843-023-2500-5</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Chemistry and Materials Science ; Chemistry/Food Science ; Controllability ; Dehydrogenation ; Electrocatalysts ; Electrochemical analysis ; First principles ; High temperature ; Materials Science ; Methanol ; Molecular dynamics ; Nanoparticles ; Oxidation ; Palladium ; Silver ; Synthesis</subject><ispartof>Science China materials, 2023-09, Vol.66 (9), p.3555-3564</ispartof><rights>Science China Press 2023</rights><rights>Science China Press 2023.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-389dcf86c66d6e92b1d9765c331f9368b3599710c607ec24dc196361836ad95d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40843-023-2500-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40843-023-2500-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Hu, Zheng</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Qiu, Yishu</creatorcontrib><creatorcontrib>Zhao, Wenbo</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Hu, Shi</creatorcontrib><title>Size-dependent methanol oxidation behavior of Pd-Ag synthesized by the high-temperature shock method</title><title>Science China materials</title><addtitle>Sci. China Mater</addtitle><description>Exploring the relationship between the elemental distribution and electrochemical performance of nanoparticles, and revealing the involved mechanism is essential to the design of better electrocatalysts. Herein, high-temperature shock (HTS) is used to synthesize Pd-Ag nanoparticles with controllable sizes and mixing degree by applying different currents. Molecular dynamics is performed to simulate the structural evolution in the HTS process and establish the atomic model (Pd x Ag@Ag) for Pd-Ag nanoparticles, which is difficult to investigate with the conventional characterization methods. The Pd-Ag nanoparticles obtained under an applied current of 30 A exhibit the most outstanding specific activity for the methanol oxidation reaction (MOR) among all samples. By utilizing first-principles and random-walk simulation, the synergy between Pd and Ag is decoupled into the lower barrier of dehydrogenation and higher redox frequency of the Pd-Ag couple.</description><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Controllability</subject><subject>Dehydrogenation</subject><subject>Electrocatalysts</subject><subject>Electrochemical analysis</subject><subject>First principles</subject><subject>High temperature</subject><subject>Materials Science</subject><subject>Methanol</subject><subject>Molecular dynamics</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Palladium</subject><subject>Silver</subject><subject>Synthesis</subject><issn>2095-8226</issn><issn>2199-4501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWGp_gLuA62gek0yyLMUXFBTUdZhJ7nSmtpOapGL99Y6O4MrVPYvznQsfQueMXjJKy6tUUF0IQrkgXFJK5BGacGYMKSRlx0OmRhLNuTpFs5TWlFKmJGNGT5B_6j6BeNhB76HPeAu5rfqwweGj81XuQo9raKv3LkQcGvzoyXyF06HPLaSB9Lg-4CHjtlu1JMN2B7HK-wg4tcG9_swFf4ZOmmqTYPZ7p-jl5vp5cUeWD7f3i_mSOMFYJkIb7xqtnFJegeE186ZU0gnBGiOUroU0pmTUKVqC44V3zCihmBaq8kZ6MUUX4-4uhrc9pGzXYR_74aXlWnGpCyrN0GJjy8WQUoTG7mK3reLBMmq_fdrRpx182m-fVg4MH5k0dPsVxL_l_6Eva5t3zQ</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Liu, Chang</creator><creator>Hu, Zheng</creator><creator>Li, Hui</creator><creator>Qiu, Yishu</creator><creator>Zhao, Wenbo</creator><creator>Zhou, Wei</creator><creator>Hu, Shi</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230901</creationdate><title>Size-dependent methanol oxidation behavior of Pd-Ag synthesized by the high-temperature shock method</title><author>Liu, Chang ; Hu, Zheng ; Li, Hui ; Qiu, Yishu ; Zhao, Wenbo ; Zhou, Wei ; Hu, Shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-389dcf86c66d6e92b1d9765c331f9368b3599710c607ec24dc196361836ad95d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Controllability</topic><topic>Dehydrogenation</topic><topic>Electrocatalysts</topic><topic>Electrochemical analysis</topic><topic>First principles</topic><topic>High temperature</topic><topic>Materials Science</topic><topic>Methanol</topic><topic>Molecular dynamics</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Palladium</topic><topic>Silver</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Hu, Zheng</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Qiu, Yishu</creatorcontrib><creatorcontrib>Zhao, Wenbo</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Hu, Shi</creatorcontrib><collection>CrossRef</collection><jtitle>Science China materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chang</au><au>Hu, Zheng</au><au>Li, Hui</au><au>Qiu, Yishu</au><au>Zhao, Wenbo</au><au>Zhou, Wei</au><au>Hu, Shi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size-dependent methanol oxidation behavior of Pd-Ag synthesized by the high-temperature shock method</atitle><jtitle>Science China materials</jtitle><stitle>Sci. China Mater</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>66</volume><issue>9</issue><spage>3555</spage><epage>3564</epage><pages>3555-3564</pages><issn>2095-8226</issn><eissn>2199-4501</eissn><abstract>Exploring the relationship between the elemental distribution and electrochemical performance of nanoparticles, and revealing the involved mechanism is essential to the design of better electrocatalysts. Herein, high-temperature shock (HTS) is used to synthesize Pd-Ag nanoparticles with controllable sizes and mixing degree by applying different currents. Molecular dynamics is performed to simulate the structural evolution in the HTS process and establish the atomic model (Pd x Ag@Ag) for Pd-Ag nanoparticles, which is difficult to investigate with the conventional characterization methods. The Pd-Ag nanoparticles obtained under an applied current of 30 A exhibit the most outstanding specific activity for the methanol oxidation reaction (MOR) among all samples. By utilizing first-principles and random-walk simulation, the synergy between Pd and Ag is decoupled into the lower barrier of dehydrogenation and higher redox frequency of the Pd-Ag couple.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s40843-023-2500-5</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2095-8226
ispartof Science China materials, 2023-09, Vol.66 (9), p.3555-3564
issn 2095-8226
2199-4501
language eng
recordid cdi_proquest_journals_2862584059
source SpringerNature Journals; Alma/SFX Local Collection
subjects Chemistry and Materials Science
Chemistry/Food Science
Controllability
Dehydrogenation
Electrocatalysts
Electrochemical analysis
First principles
High temperature
Materials Science
Methanol
Molecular dynamics
Nanoparticles
Oxidation
Palladium
Silver
Synthesis
title Size-dependent methanol oxidation behavior of Pd-Ag synthesized by the high-temperature shock method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T07%3A33%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size-dependent%20methanol%20oxidation%20behavior%20of%20Pd-Ag%20synthesized%20by%20the%20high-temperature%20shock%20method&rft.jtitle=Science%20China%20materials&rft.au=Liu,%20Chang&rft.date=2023-09-01&rft.volume=66&rft.issue=9&rft.spage=3555&rft.epage=3564&rft.pages=3555-3564&rft.issn=2095-8226&rft.eissn=2199-4501&rft_id=info:doi/10.1007/s40843-023-2500-5&rft_dat=%3Cproquest_cross%3E2862584059%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2862584059&rft_id=info:pmid/&rfr_iscdi=true