Research on Propagation Characteristics Based on Channel Measurements and Simulations in a Typical Open Indoor Environment

At present, it is difficult to obtain the indoor propagation loss quickly and accurately by directly using measurements in the millimeter wave band. To solve this problem, in this paper, a ray tracing method suitable for indoor scenes based on geometric optics theory, the uniform theory of diffracti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2023-09, Vol.12 (17), p.3546
Hauptverfasser: Hou, Chunzhi, Li, Qingliang, Zhang, Jinpeng, Zhang, Yushi, Guo, Lixin, Zhu, Xiuqin, Ji, Hanjie, Li, Shuangde
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page 3546
container_title Electronics (Basel)
container_volume 12
creator Hou, Chunzhi
Li, Qingliang
Zhang, Jinpeng
Zhang, Yushi
Guo, Lixin
Zhu, Xiuqin
Ji, Hanjie
Li, Shuangde
description At present, it is difficult to obtain the indoor propagation loss quickly and accurately by directly using measurements in the millimeter wave band. To solve this problem, in this paper, a ray tracing method suitable for indoor scenes based on geometric optics theory, the uniform theory of diffraction and image theory is presented; the space-alternation generalized expectation-maximization (SAGE) algorithm is used to analyze the measured data and the multipath information of the wireless channel is analyzed; three deep learning models are used to predict the path loss at different receiving distances based on 1600 sets of path loss data. The results show that the comparison between the ray tracing and experimental results shows a good agreement. Moreover, the root-mean-square error (RMSE) and mean absolute error (MAE) of the long short-term memory (LSTM) network are the smallest, and the LSTM has a better fitting effect on the propagation loss sequences predicted at more distant locations when compared with the recurrent neural network (RNN) and gate recurrent unit (GRU) methods, which can better reflect the propagation trend. This provides theoretical support for the layout of base stations and network optimization in typical open indoor environments.
doi_str_mv 10.3390/electronics12173546
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2862245061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A764265071</galeid><sourcerecordid>A764265071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-47b6ab020ea9757b904c555993ef910f74b34a524cb917826e49a872e0dd79983</originalsourceid><addsrcrecordid>eNptUUtPwzAMrhBIIOAXcInEuZBXm-YIE49JQyAY58pN3S2oTUrSIcGvJ2McOGAfbNnf54e-LDtj9EIITS-xRzMF76yJjDMlClnuZUecKp1rrvn-n_wwO43xjSbTTFSCHmVfzxgRglkT78hT8COsYLIpn60hgJkw2DilyeQaIrZk13AOe_KAEDcBB3RTJOBa8mKHTf9DjsQ6AmT5OVoDPXkc0ZG5a70P5MZ92HTrlnWSHXTQRzz9jcfZ6-3NcnafLx7v5rOrRW4EY1MuVVNCQzlF0KpQjabSFEWhtcBOM9op2QgJBZem0UxVvESpoVIcadsqrStxnJ3v5o7Bv28wTvWb3wSXVta8KjmXBS1ZQl3sUCvosbau81P6P3mLgzXeYWdT_UqVkpcFVVuC2BFM8DEG7Oox2AHCZ81ovRWm_kcY8Q2M-oSP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862245061</pqid></control><display><type>article</type><title>Research on Propagation Characteristics Based on Channel Measurements and Simulations in a Typical Open Indoor Environment</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hou, Chunzhi ; Li, Qingliang ; Zhang, Jinpeng ; Zhang, Yushi ; Guo, Lixin ; Zhu, Xiuqin ; Ji, Hanjie ; Li, Shuangde</creator><creatorcontrib>Hou, Chunzhi ; Li, Qingliang ; Zhang, Jinpeng ; Zhang, Yushi ; Guo, Lixin ; Zhu, Xiuqin ; Ji, Hanjie ; Li, Shuangde</creatorcontrib><description>At present, it is difficult to obtain the indoor propagation loss quickly and accurately by directly using measurements in the millimeter wave band. To solve this problem, in this paper, a ray tracing method suitable for indoor scenes based on geometric optics theory, the uniform theory of diffraction and image theory is presented; the space-alternation generalized expectation-maximization (SAGE) algorithm is used to analyze the measured data and the multipath information of the wireless channel is analyzed; three deep learning models are used to predict the path loss at different receiving distances based on 1600 sets of path loss data. The results show that the comparison between the ray tracing and experimental results shows a good agreement. Moreover, the root-mean-square error (RMSE) and mean absolute error (MAE) of the long short-term memory (LSTM) network are the smallest, and the LSTM has a better fitting effect on the propagation loss sequences predicted at more distant locations when compared with the recurrent neural network (RNN) and gate recurrent unit (GRU) methods, which can better reflect the propagation trend. This provides theoretical support for the layout of base stations and network optimization in typical open indoor environments.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12173546</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Antennas ; Communication ; Diffraction theory ; Electric fields ; Geometrical optics ; Indoor environments ; Location-based systems ; Machine learning ; Mathematical optimization ; Methods ; Millimeter wave communication systems ; Millimeter waves ; Neural networks ; Optimization ; Propagation ; Radiation ; Radio equipment ; Ray tracing ; Recurrent neural networks ; Root-mean-square errors ; Simulation ; Wave propagation</subject><ispartof>Electronics (Basel), 2023-09, Vol.12 (17), p.3546</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-47b6ab020ea9757b904c555993ef910f74b34a524cb917826e49a872e0dd79983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hou, Chunzhi</creatorcontrib><creatorcontrib>Li, Qingliang</creatorcontrib><creatorcontrib>Zhang, Jinpeng</creatorcontrib><creatorcontrib>Zhang, Yushi</creatorcontrib><creatorcontrib>Guo, Lixin</creatorcontrib><creatorcontrib>Zhu, Xiuqin</creatorcontrib><creatorcontrib>Ji, Hanjie</creatorcontrib><creatorcontrib>Li, Shuangde</creatorcontrib><title>Research on Propagation Characteristics Based on Channel Measurements and Simulations in a Typical Open Indoor Environment</title><title>Electronics (Basel)</title><description>At present, it is difficult to obtain the indoor propagation loss quickly and accurately by directly using measurements in the millimeter wave band. To solve this problem, in this paper, a ray tracing method suitable for indoor scenes based on geometric optics theory, the uniform theory of diffraction and image theory is presented; the space-alternation generalized expectation-maximization (SAGE) algorithm is used to analyze the measured data and the multipath information of the wireless channel is analyzed; three deep learning models are used to predict the path loss at different receiving distances based on 1600 sets of path loss data. The results show that the comparison between the ray tracing and experimental results shows a good agreement. Moreover, the root-mean-square error (RMSE) and mean absolute error (MAE) of the long short-term memory (LSTM) network are the smallest, and the LSTM has a better fitting effect on the propagation loss sequences predicted at more distant locations when compared with the recurrent neural network (RNN) and gate recurrent unit (GRU) methods, which can better reflect the propagation trend. This provides theoretical support for the layout of base stations and network optimization in typical open indoor environments.</description><subject>Algorithms</subject><subject>Antennas</subject><subject>Communication</subject><subject>Diffraction theory</subject><subject>Electric fields</subject><subject>Geometrical optics</subject><subject>Indoor environments</subject><subject>Location-based systems</subject><subject>Machine learning</subject><subject>Mathematical optimization</subject><subject>Methods</subject><subject>Millimeter wave communication systems</subject><subject>Millimeter waves</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Propagation</subject><subject>Radiation</subject><subject>Radio equipment</subject><subject>Ray tracing</subject><subject>Recurrent neural networks</subject><subject>Root-mean-square errors</subject><subject>Simulation</subject><subject>Wave propagation</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptUUtPwzAMrhBIIOAXcInEuZBXm-YIE49JQyAY58pN3S2oTUrSIcGvJ2McOGAfbNnf54e-LDtj9EIITS-xRzMF76yJjDMlClnuZUecKp1rrvn-n_wwO43xjSbTTFSCHmVfzxgRglkT78hT8COsYLIpn60hgJkw2DilyeQaIrZk13AOe_KAEDcBB3RTJOBa8mKHTf9DjsQ6AmT5OVoDPXkc0ZG5a70P5MZ92HTrlnWSHXTQRzz9jcfZ6-3NcnafLx7v5rOrRW4EY1MuVVNCQzlF0KpQjabSFEWhtcBOM9op2QgJBZem0UxVvESpoVIcadsqrStxnJ3v5o7Bv28wTvWb3wSXVta8KjmXBS1ZQl3sUCvosbau81P6P3mLgzXeYWdT_UqVkpcFVVuC2BFM8DEG7Oox2AHCZ81ovRWm_kcY8Q2M-oSP</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Hou, Chunzhi</creator><creator>Li, Qingliang</creator><creator>Zhang, Jinpeng</creator><creator>Zhang, Yushi</creator><creator>Guo, Lixin</creator><creator>Zhu, Xiuqin</creator><creator>Ji, Hanjie</creator><creator>Li, Shuangde</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20230901</creationdate><title>Research on Propagation Characteristics Based on Channel Measurements and Simulations in a Typical Open Indoor Environment</title><author>Hou, Chunzhi ; Li, Qingliang ; Zhang, Jinpeng ; Zhang, Yushi ; Guo, Lixin ; Zhu, Xiuqin ; Ji, Hanjie ; Li, Shuangde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-47b6ab020ea9757b904c555993ef910f74b34a524cb917826e49a872e0dd79983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Antennas</topic><topic>Communication</topic><topic>Diffraction theory</topic><topic>Electric fields</topic><topic>Geometrical optics</topic><topic>Indoor environments</topic><topic>Location-based systems</topic><topic>Machine learning</topic><topic>Mathematical optimization</topic><topic>Methods</topic><topic>Millimeter wave communication systems</topic><topic>Millimeter waves</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Propagation</topic><topic>Radiation</topic><topic>Radio equipment</topic><topic>Ray tracing</topic><topic>Recurrent neural networks</topic><topic>Root-mean-square errors</topic><topic>Simulation</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Chunzhi</creatorcontrib><creatorcontrib>Li, Qingliang</creatorcontrib><creatorcontrib>Zhang, Jinpeng</creatorcontrib><creatorcontrib>Zhang, Yushi</creatorcontrib><creatorcontrib>Guo, Lixin</creatorcontrib><creatorcontrib>Zhu, Xiuqin</creatorcontrib><creatorcontrib>Ji, Hanjie</creatorcontrib><creatorcontrib>Li, Shuangde</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Chunzhi</au><au>Li, Qingliang</au><au>Zhang, Jinpeng</au><au>Zhang, Yushi</au><au>Guo, Lixin</au><au>Zhu, Xiuqin</au><au>Ji, Hanjie</au><au>Li, Shuangde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Propagation Characteristics Based on Channel Measurements and Simulations in a Typical Open Indoor Environment</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>12</volume><issue>17</issue><spage>3546</spage><pages>3546-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>At present, it is difficult to obtain the indoor propagation loss quickly and accurately by directly using measurements in the millimeter wave band. To solve this problem, in this paper, a ray tracing method suitable for indoor scenes based on geometric optics theory, the uniform theory of diffraction and image theory is presented; the space-alternation generalized expectation-maximization (SAGE) algorithm is used to analyze the measured data and the multipath information of the wireless channel is analyzed; three deep learning models are used to predict the path loss at different receiving distances based on 1600 sets of path loss data. The results show that the comparison between the ray tracing and experimental results shows a good agreement. Moreover, the root-mean-square error (RMSE) and mean absolute error (MAE) of the long short-term memory (LSTM) network are the smallest, and the LSTM has a better fitting effect on the propagation loss sequences predicted at more distant locations when compared with the recurrent neural network (RNN) and gate recurrent unit (GRU) methods, which can better reflect the propagation trend. This provides theoretical support for the layout of base stations and network optimization in typical open indoor environments.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12173546</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2023-09, Vol.12 (17), p.3546
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2862245061
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Antennas
Communication
Diffraction theory
Electric fields
Geometrical optics
Indoor environments
Location-based systems
Machine learning
Mathematical optimization
Methods
Millimeter wave communication systems
Millimeter waves
Neural networks
Optimization
Propagation
Radiation
Radio equipment
Ray tracing
Recurrent neural networks
Root-mean-square errors
Simulation
Wave propagation
title Research on Propagation Characteristics Based on Channel Measurements and Simulations in a Typical Open Indoor Environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T08%3A06%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Propagation%20Characteristics%20Based%20on%20Channel%20Measurements%20and%20Simulations%20in%20a%20Typical%20Open%20Indoor%20Environment&rft.jtitle=Electronics%20(Basel)&rft.au=Hou,%20Chunzhi&rft.date=2023-09-01&rft.volume=12&rft.issue=17&rft.spage=3546&rft.pages=3546-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12173546&rft_dat=%3Cgale_proqu%3EA764265071%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2862245061&rft_id=info:pmid/&rft_galeid=A764265071&rfr_iscdi=true