Research on Propagation Characteristics Based on Channel Measurements and Simulations in a Typical Open Indoor Environment
At present, it is difficult to obtain the indoor propagation loss quickly and accurately by directly using measurements in the millimeter wave band. To solve this problem, in this paper, a ray tracing method suitable for indoor scenes based on geometric optics theory, the uniform theory of diffracti...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2023-09, Vol.12 (17), p.3546 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 17 |
container_start_page | 3546 |
container_title | Electronics (Basel) |
container_volume | 12 |
creator | Hou, Chunzhi Li, Qingliang Zhang, Jinpeng Zhang, Yushi Guo, Lixin Zhu, Xiuqin Ji, Hanjie Li, Shuangde |
description | At present, it is difficult to obtain the indoor propagation loss quickly and accurately by directly using measurements in the millimeter wave band. To solve this problem, in this paper, a ray tracing method suitable for indoor scenes based on geometric optics theory, the uniform theory of diffraction and image theory is presented; the space-alternation generalized expectation-maximization (SAGE) algorithm is used to analyze the measured data and the multipath information of the wireless channel is analyzed; three deep learning models are used to predict the path loss at different receiving distances based on 1600 sets of path loss data. The results show that the comparison between the ray tracing and experimental results shows a good agreement. Moreover, the root-mean-square error (RMSE) and mean absolute error (MAE) of the long short-term memory (LSTM) network are the smallest, and the LSTM has a better fitting effect on the propagation loss sequences predicted at more distant locations when compared with the recurrent neural network (RNN) and gate recurrent unit (GRU) methods, which can better reflect the propagation trend. This provides theoretical support for the layout of base stations and network optimization in typical open indoor environments. |
doi_str_mv | 10.3390/electronics12173546 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2862245061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A764265071</galeid><sourcerecordid>A764265071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-47b6ab020ea9757b904c555993ef910f74b34a524cb917826e49a872e0dd79983</originalsourceid><addsrcrecordid>eNptUUtPwzAMrhBIIOAXcInEuZBXm-YIE49JQyAY58pN3S2oTUrSIcGvJ2McOGAfbNnf54e-LDtj9EIITS-xRzMF76yJjDMlClnuZUecKp1rrvn-n_wwO43xjSbTTFSCHmVfzxgRglkT78hT8COsYLIpn60hgJkw2DilyeQaIrZk13AOe_KAEDcBB3RTJOBa8mKHTf9DjsQ6AmT5OVoDPXkc0ZG5a70P5MZ92HTrlnWSHXTQRzz9jcfZ6-3NcnafLx7v5rOrRW4EY1MuVVNCQzlF0KpQjabSFEWhtcBOM9op2QgJBZem0UxVvESpoVIcadsqrStxnJ3v5o7Bv28wTvWb3wSXVta8KjmXBS1ZQl3sUCvosbau81P6P3mLgzXeYWdT_UqVkpcFVVuC2BFM8DEG7Oox2AHCZ81ovRWm_kcY8Q2M-oSP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862245061</pqid></control><display><type>article</type><title>Research on Propagation Characteristics Based on Channel Measurements and Simulations in a Typical Open Indoor Environment</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hou, Chunzhi ; Li, Qingliang ; Zhang, Jinpeng ; Zhang, Yushi ; Guo, Lixin ; Zhu, Xiuqin ; Ji, Hanjie ; Li, Shuangde</creator><creatorcontrib>Hou, Chunzhi ; Li, Qingliang ; Zhang, Jinpeng ; Zhang, Yushi ; Guo, Lixin ; Zhu, Xiuqin ; Ji, Hanjie ; Li, Shuangde</creatorcontrib><description>At present, it is difficult to obtain the indoor propagation loss quickly and accurately by directly using measurements in the millimeter wave band. To solve this problem, in this paper, a ray tracing method suitable for indoor scenes based on geometric optics theory, the uniform theory of diffraction and image theory is presented; the space-alternation generalized expectation-maximization (SAGE) algorithm is used to analyze the measured data and the multipath information of the wireless channel is analyzed; three deep learning models are used to predict the path loss at different receiving distances based on 1600 sets of path loss data. The results show that the comparison between the ray tracing and experimental results shows a good agreement. Moreover, the root-mean-square error (RMSE) and mean absolute error (MAE) of the long short-term memory (LSTM) network are the smallest, and the LSTM has a better fitting effect on the propagation loss sequences predicted at more distant locations when compared with the recurrent neural network (RNN) and gate recurrent unit (GRU) methods, which can better reflect the propagation trend. This provides theoretical support for the layout of base stations and network optimization in typical open indoor environments.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12173546</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Antennas ; Communication ; Diffraction theory ; Electric fields ; Geometrical optics ; Indoor environments ; Location-based systems ; Machine learning ; Mathematical optimization ; Methods ; Millimeter wave communication systems ; Millimeter waves ; Neural networks ; Optimization ; Propagation ; Radiation ; Radio equipment ; Ray tracing ; Recurrent neural networks ; Root-mean-square errors ; Simulation ; Wave propagation</subject><ispartof>Electronics (Basel), 2023-09, Vol.12 (17), p.3546</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-47b6ab020ea9757b904c555993ef910f74b34a524cb917826e49a872e0dd79983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hou, Chunzhi</creatorcontrib><creatorcontrib>Li, Qingliang</creatorcontrib><creatorcontrib>Zhang, Jinpeng</creatorcontrib><creatorcontrib>Zhang, Yushi</creatorcontrib><creatorcontrib>Guo, Lixin</creatorcontrib><creatorcontrib>Zhu, Xiuqin</creatorcontrib><creatorcontrib>Ji, Hanjie</creatorcontrib><creatorcontrib>Li, Shuangde</creatorcontrib><title>Research on Propagation Characteristics Based on Channel Measurements and Simulations in a Typical Open Indoor Environment</title><title>Electronics (Basel)</title><description>At present, it is difficult to obtain the indoor propagation loss quickly and accurately by directly using measurements in the millimeter wave band. To solve this problem, in this paper, a ray tracing method suitable for indoor scenes based on geometric optics theory, the uniform theory of diffraction and image theory is presented; the space-alternation generalized expectation-maximization (SAGE) algorithm is used to analyze the measured data and the multipath information of the wireless channel is analyzed; three deep learning models are used to predict the path loss at different receiving distances based on 1600 sets of path loss data. The results show that the comparison between the ray tracing and experimental results shows a good agreement. Moreover, the root-mean-square error (RMSE) and mean absolute error (MAE) of the long short-term memory (LSTM) network are the smallest, and the LSTM has a better fitting effect on the propagation loss sequences predicted at more distant locations when compared with the recurrent neural network (RNN) and gate recurrent unit (GRU) methods, which can better reflect the propagation trend. This provides theoretical support for the layout of base stations and network optimization in typical open indoor environments.</description><subject>Algorithms</subject><subject>Antennas</subject><subject>Communication</subject><subject>Diffraction theory</subject><subject>Electric fields</subject><subject>Geometrical optics</subject><subject>Indoor environments</subject><subject>Location-based systems</subject><subject>Machine learning</subject><subject>Mathematical optimization</subject><subject>Methods</subject><subject>Millimeter wave communication systems</subject><subject>Millimeter waves</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Propagation</subject><subject>Radiation</subject><subject>Radio equipment</subject><subject>Ray tracing</subject><subject>Recurrent neural networks</subject><subject>Root-mean-square errors</subject><subject>Simulation</subject><subject>Wave propagation</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptUUtPwzAMrhBIIOAXcInEuZBXm-YIE49JQyAY58pN3S2oTUrSIcGvJ2McOGAfbNnf54e-LDtj9EIITS-xRzMF76yJjDMlClnuZUecKp1rrvn-n_wwO43xjSbTTFSCHmVfzxgRglkT78hT8COsYLIpn60hgJkw2DilyeQaIrZk13AOe_KAEDcBB3RTJOBa8mKHTf9DjsQ6AmT5OVoDPXkc0ZG5a70P5MZ92HTrlnWSHXTQRzz9jcfZ6-3NcnafLx7v5rOrRW4EY1MuVVNCQzlF0KpQjabSFEWhtcBOM9op2QgJBZem0UxVvESpoVIcadsqrStxnJ3v5o7Bv28wTvWb3wSXVta8KjmXBS1ZQl3sUCvosbau81P6P3mLgzXeYWdT_UqVkpcFVVuC2BFM8DEG7Oox2AHCZ81ovRWm_kcY8Q2M-oSP</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Hou, Chunzhi</creator><creator>Li, Qingliang</creator><creator>Zhang, Jinpeng</creator><creator>Zhang, Yushi</creator><creator>Guo, Lixin</creator><creator>Zhu, Xiuqin</creator><creator>Ji, Hanjie</creator><creator>Li, Shuangde</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20230901</creationdate><title>Research on Propagation Characteristics Based on Channel Measurements and Simulations in a Typical Open Indoor Environment</title><author>Hou, Chunzhi ; Li, Qingliang ; Zhang, Jinpeng ; Zhang, Yushi ; Guo, Lixin ; Zhu, Xiuqin ; Ji, Hanjie ; Li, Shuangde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-47b6ab020ea9757b904c555993ef910f74b34a524cb917826e49a872e0dd79983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Antennas</topic><topic>Communication</topic><topic>Diffraction theory</topic><topic>Electric fields</topic><topic>Geometrical optics</topic><topic>Indoor environments</topic><topic>Location-based systems</topic><topic>Machine learning</topic><topic>Mathematical optimization</topic><topic>Methods</topic><topic>Millimeter wave communication systems</topic><topic>Millimeter waves</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Propagation</topic><topic>Radiation</topic><topic>Radio equipment</topic><topic>Ray tracing</topic><topic>Recurrent neural networks</topic><topic>Root-mean-square errors</topic><topic>Simulation</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Chunzhi</creatorcontrib><creatorcontrib>Li, Qingliang</creatorcontrib><creatorcontrib>Zhang, Jinpeng</creatorcontrib><creatorcontrib>Zhang, Yushi</creatorcontrib><creatorcontrib>Guo, Lixin</creatorcontrib><creatorcontrib>Zhu, Xiuqin</creatorcontrib><creatorcontrib>Ji, Hanjie</creatorcontrib><creatorcontrib>Li, Shuangde</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Chunzhi</au><au>Li, Qingliang</au><au>Zhang, Jinpeng</au><au>Zhang, Yushi</au><au>Guo, Lixin</au><au>Zhu, Xiuqin</au><au>Ji, Hanjie</au><au>Li, Shuangde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Propagation Characteristics Based on Channel Measurements and Simulations in a Typical Open Indoor Environment</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>12</volume><issue>17</issue><spage>3546</spage><pages>3546-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>At present, it is difficult to obtain the indoor propagation loss quickly and accurately by directly using measurements in the millimeter wave band. To solve this problem, in this paper, a ray tracing method suitable for indoor scenes based on geometric optics theory, the uniform theory of diffraction and image theory is presented; the space-alternation generalized expectation-maximization (SAGE) algorithm is used to analyze the measured data and the multipath information of the wireless channel is analyzed; three deep learning models are used to predict the path loss at different receiving distances based on 1600 sets of path loss data. The results show that the comparison between the ray tracing and experimental results shows a good agreement. Moreover, the root-mean-square error (RMSE) and mean absolute error (MAE) of the long short-term memory (LSTM) network are the smallest, and the LSTM has a better fitting effect on the propagation loss sequences predicted at more distant locations when compared with the recurrent neural network (RNN) and gate recurrent unit (GRU) methods, which can better reflect the propagation trend. This provides theoretical support for the layout of base stations and network optimization in typical open indoor environments.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12173546</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2023-09, Vol.12 (17), p.3546 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2862245061 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Antennas Communication Diffraction theory Electric fields Geometrical optics Indoor environments Location-based systems Machine learning Mathematical optimization Methods Millimeter wave communication systems Millimeter waves Neural networks Optimization Propagation Radiation Radio equipment Ray tracing Recurrent neural networks Root-mean-square errors Simulation Wave propagation |
title | Research on Propagation Characteristics Based on Channel Measurements and Simulations in a Typical Open Indoor Environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T08%3A06%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Propagation%20Characteristics%20Based%20on%20Channel%20Measurements%20and%20Simulations%20in%20a%20Typical%20Open%20Indoor%20Environment&rft.jtitle=Electronics%20(Basel)&rft.au=Hou,%20Chunzhi&rft.date=2023-09-01&rft.volume=12&rft.issue=17&rft.spage=3546&rft.pages=3546-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12173546&rft_dat=%3Cgale_proqu%3EA764265071%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2862245061&rft_id=info:pmid/&rft_galeid=A764265071&rfr_iscdi=true |