Some results for semi-stable radial solutions of k-Hessian equations with weight on ℝn

We devote this paper to study semi-stable nonconstant radial solutions of $S_k(D^2u)=w(\left \vert x \right \vert )g(u)$ on the Euclidean space $\mathbb {R}^n$. We establish pointwise estimates and necessary conditions for the existence of such solutions (not necessarily bounded) for this equation....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2023-10, Vol.153 (5), p.1751-1776
Hauptverfasser: Navarro, Miguel Angel, Sánchez, Justino
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1776
container_issue 5
container_start_page 1751
container_title Proceedings of the Royal Society of Edinburgh. Section A. Mathematics
container_volume 153
creator Navarro, Miguel Angel
Sánchez, Justino
description We devote this paper to study semi-stable nonconstant radial solutions of $S_k(D^2u)=w(\left \vert x \right \vert )g(u)$ on the Euclidean space $\mathbb {R}^n$. We establish pointwise estimates and necessary conditions for the existence of such solutions (not necessarily bounded) for this equation. For bounded solutions we estimate their asymptotic behaviour at infinity. All the estimates are given in terms of the spatial dimension $n$, the values of $k$ and the behaviour at infinity of the growth rate function of $w$.
doi_str_mv 10.1017/prm.2022.73
format Article
fullrecord <record><control><sourceid>proquest_cambr</sourceid><recordid>TN_cdi_proquest_journals_2862057930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_prm_2022_73</cupid><sourcerecordid>2862057930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c151t-4d79229fc57766b26b020ef15a9336a96ff58a8fcc5349c0efb7b381fa4be0df3</originalsourceid><addsrcrecordid>eNpFkNFKwzAUhoMoOKdXvkDA68yTpEnaSxnqhIEXKnhXkjbZMttma1L2Ar6GL7cnsWOCVwf-8_H_8CF0S2FGgar7bd_OGDA2U_wMTWimOFGUZedoAhxywiiIS3QV4wYAZC7UBH2-hdbi3sahSRG70ONoW09i0qYZc1173eAYmiH50EUcHP4iCxuj1x22u0Gf4r1Pa7y3frVOOHT48P3TXaMLp5tob_7uFH08Pb7PF2T5-vwyf1iSigqaSFargrHCVUIpKQ2TBhhYR4UuOJe6kM6JXOeuqgTPimp8GWV4Tp3OjIXa8Sm6O_Vu-7AbbEzlJgx9N06WLJcMhCo4jBQ5UZVuTe_rlf3HKJRHeeUorzzKKxXnv-rfY8Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862057930</pqid></control><display><type>article</type><title>Some results for semi-stable radial solutions of k-Hessian equations with weight on ℝn</title><source>Cambridge University Press Journals Complete</source><creator>Navarro, Miguel Angel ; Sánchez, Justino</creator><creatorcontrib>Navarro, Miguel Angel ; Sánchez, Justino</creatorcontrib><description>We devote this paper to study semi-stable nonconstant radial solutions of $S_k(D^2u)=w(\left \vert x \right \vert )g(u)$ on the Euclidean space $\mathbb {R}^n$. We establish pointwise estimates and necessary conditions for the existence of such solutions (not necessarily bounded) for this equation. For bounded solutions we estimate their asymptotic behaviour at infinity. All the estimates are given in terms of the spatial dimension $n$, the values of $k$ and the behaviour at infinity of the growth rate function of $w$.</description><identifier>ISSN: 0308-2105</identifier><identifier>EISSN: 1473-7124</identifier><identifier>DOI: 10.1017/prm.2022.73</identifier><language>eng</language><publisher>Edinburgh, UK: Royal Society of Edinburgh Scotland Foundation</publisher><subject>Asymptotic properties ; Eigenvalues ; Estimates ; Euclidean geometry ; Infinity</subject><ispartof>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2023-10, Vol.153 (5), p.1751-1776</ispartof><rights>Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0826-3940 ; 0000-0002-9607-5204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0308210522000737/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Navarro, Miguel Angel</creatorcontrib><creatorcontrib>Sánchez, Justino</creatorcontrib><title>Some results for semi-stable radial solutions of k-Hessian equations with weight on ℝn</title><title>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</title><addtitle>Proceedings of the Royal Society of Edinburgh: Section A Mathematics</addtitle><description>We devote this paper to study semi-stable nonconstant radial solutions of $S_k(D^2u)=w(\left \vert x \right \vert )g(u)$ on the Euclidean space $\mathbb {R}^n$. We establish pointwise estimates and necessary conditions for the existence of such solutions (not necessarily bounded) for this equation. For bounded solutions we estimate their asymptotic behaviour at infinity. All the estimates are given in terms of the spatial dimension $n$, the values of $k$ and the behaviour at infinity of the growth rate function of $w$.</description><subject>Asymptotic properties</subject><subject>Eigenvalues</subject><subject>Estimates</subject><subject>Euclidean geometry</subject><subject>Infinity</subject><issn>0308-2105</issn><issn>1473-7124</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkNFKwzAUhoMoOKdXvkDA68yTpEnaSxnqhIEXKnhXkjbZMttma1L2Ar6GL7cnsWOCVwf-8_H_8CF0S2FGgar7bd_OGDA2U_wMTWimOFGUZedoAhxywiiIS3QV4wYAZC7UBH2-hdbi3sahSRG70ONoW09i0qYZc1173eAYmiH50EUcHP4iCxuj1x22u0Gf4r1Pa7y3frVOOHT48P3TXaMLp5tob_7uFH08Pb7PF2T5-vwyf1iSigqaSFargrHCVUIpKQ2TBhhYR4UuOJe6kM6JXOeuqgTPimp8GWV4Tp3OjIXa8Sm6O_Vu-7AbbEzlJgx9N06WLJcMhCo4jBQ5UZVuTe_rlf3HKJRHeeUorzzKKxXnv-rfY8Y</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Navarro, Miguel Angel</creator><creator>Sánchez, Justino</creator><general>Royal Society of Edinburgh Scotland Foundation</general><general>Cambridge University Press</general><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0826-3940</orcidid><orcidid>https://orcid.org/0000-0002-9607-5204</orcidid></search><sort><creationdate>202310</creationdate><title>Some results for semi-stable radial solutions of k-Hessian equations with weight on ℝn</title><author>Navarro, Miguel Angel ; Sánchez, Justino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c151t-4d79229fc57766b26b020ef15a9336a96ff58a8fcc5349c0efb7b381fa4be0df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic properties</topic><topic>Eigenvalues</topic><topic>Estimates</topic><topic>Euclidean geometry</topic><topic>Infinity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Navarro, Miguel Angel</creatorcontrib><creatorcontrib>Sánchez, Justino</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Navarro, Miguel Angel</au><au>Sánchez, Justino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some results for semi-stable radial solutions of k-Hessian equations with weight on ℝn</atitle><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle><addtitle>Proceedings of the Royal Society of Edinburgh: Section A Mathematics</addtitle><date>2023-10</date><risdate>2023</risdate><volume>153</volume><issue>5</issue><spage>1751</spage><epage>1776</epage><pages>1751-1776</pages><issn>0308-2105</issn><eissn>1473-7124</eissn><abstract>We devote this paper to study semi-stable nonconstant radial solutions of $S_k(D^2u)=w(\left \vert x \right \vert )g(u)$ on the Euclidean space $\mathbb {R}^n$. We establish pointwise estimates and necessary conditions for the existence of such solutions (not necessarily bounded) for this equation. For bounded solutions we estimate their asymptotic behaviour at infinity. All the estimates are given in terms of the spatial dimension $n$, the values of $k$ and the behaviour at infinity of the growth rate function of $w$.</abstract><cop>Edinburgh, UK</cop><pub>Royal Society of Edinburgh Scotland Foundation</pub><doi>10.1017/prm.2022.73</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-0826-3940</orcidid><orcidid>https://orcid.org/0000-0002-9607-5204</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0308-2105
ispartof Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2023-10, Vol.153 (5), p.1751-1776
issn 0308-2105
1473-7124
language eng
recordid cdi_proquest_journals_2862057930
source Cambridge University Press Journals Complete
subjects Asymptotic properties
Eigenvalues
Estimates
Euclidean geometry
Infinity
title Some results for semi-stable radial solutions of k-Hessian equations with weight on ℝn
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A01%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cambr&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20results%20for%20semi-stable%20radial%20solutions%20of%20k-Hessian%20equations%20with%20weight%20on%20%E2%84%9Dn&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20Edinburgh.%20Section%20A.%20Mathematics&rft.au=Navarro,%20Miguel%20Angel&rft.date=2023-10&rft.volume=153&rft.issue=5&rft.spage=1751&rft.epage=1776&rft.pages=1751-1776&rft.issn=0308-2105&rft.eissn=1473-7124&rft_id=info:doi/10.1017/prm.2022.73&rft_dat=%3Cproquest_cambr%3E2862057930%3C/proquest_cambr%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2862057930&rft_id=info:pmid/&rft_cupid=10_1017_prm_2022_73&rfr_iscdi=true