Cross-Validation of the Ionospheric Vertical Drift Measurements Based on ICON/IVM, Swarm, and the Ground-Based Radar at the Jicamarca Radio Observatory

The Ion Velocity Meter (IVM) on NASA’s Ionospheric Connection Explorer (ICON) reports the in-situ ion density, ion temperature and 3-component ion drift velocity, retrieved from measurements by a retarding potential analyzer and an ion drift meter. ICON was launched during a deep solar minimum in la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Space science reviews 2023-09, Vol.219 (6), p.47, Article 47
Hauptverfasser: Wu, Yen-Jung J., Mende, Stephen, Harding, Brian J., Alken, Patrick, Maute, Astrid, Immel, Thomas J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 47
container_title Space science reviews
container_volume 219
creator Wu, Yen-Jung J.
Mende, Stephen
Harding, Brian J.
Alken, Patrick
Maute, Astrid
Immel, Thomas J.
description The Ion Velocity Meter (IVM) on NASA’s Ionospheric Connection Explorer (ICON) reports the in-situ ion density, ion temperature and 3-component ion drift velocity, retrieved from measurements by a retarding potential analyzer and an ion drift meter. ICON was launched during a deep solar minimum in late 2019, followed by a solar quiet (F10.7 < 80) period until September 2020. In order to quantify the uncertainties in the IVM’s drift velocity in a low plasma density environment, we compared IVM’s vertical drift velocity with eastward electric field (EEF) obtained from Swarm’s equatorial electrojet current measurements, the vertical drift from ground-based incoherent scatter radar (ISR) at Jicamarca Radio Observatory (JRO) and from Jicamarca Unattended Long-term studies of Ionosphere and Atmosphere (JULIA) coherent mode. The main results of this study show that (1) the vertical drift derived from Swarm’s EEF and ISR are in good agreement with the zonal electric field derived from JULIA’s vertical drift regardless of the F10.7 value. (2) The zonal electric field derived from IVM’s meridional drift is in good agreement with Swarm’s EEF in 2021, whereas the distribution is highly scattered in the deepest solar minimum in 2020. (3) An ad hoc IVM correction based on the 24-hour running mean of meridional drift can bring the IVM data into better agreement with Swarm and JULIA. An additional quality control based on O + fractional composition may be needed for some studies using IVM’s vertical drift. By using the same methodology presented in this work, future missions could calibrate their drift measurements to facilitate meaningful integration with ICON/IVM observations through the comparision with ground-based measurements.
doi_str_mv 10.1007/s11214-023-00993-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2861997443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861997443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6ebcd2c99f2ce0e3e3663cf29123430c5dc415472a59f6627c0d5e1f00ad05f93</originalsourceid><addsrcrecordid>eNp9kc9OGzEQxi0EEgH6Aj1Z4hrD2N4_8RFSoKkCkaDN1TL2mGyUrFPbacWT9HW7m63UG6eRZr7vN6P5CPnM4YoD1NeJc8ELBkIyAKUkU0dkxMtaMFXV4piMAOSEVRImp-QspTVAb6tH5M80hpTY0mwaZ3ITWho8zSuks9CGtFthbCxdYsyNNRv6JTY-00c0aR9xi21O9NYkdLTzzaaLp-vZ8nFMX36buB1T07oD6SGGfevYIHw2zkRq8mHyrYNuTbSmbzeBLl4Txl8mh_h-QU682ST89K-ekx_3d9-nX9l88TCb3syZlVxlVuGrdcIq5YVFQImyqqT1QnEhCwm2dLbgZVELUypfVaK24ErkHsA4KL2S5-Ry4O5i-LnHlPU67GPbrdRiUnGl6qKQnUoMKtt_K6LXu9h0l79rDrr_pB4C0F0A-hCA7tFyMKVO3L5h_I_-wPUXXCCI9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861997443</pqid></control><display><type>article</type><title>Cross-Validation of the Ionospheric Vertical Drift Measurements Based on ICON/IVM, Swarm, and the Ground-Based Radar at the Jicamarca Radio Observatory</title><source>Springer Nature - Complete Springer Journals</source><creator>Wu, Yen-Jung J. ; Mende, Stephen ; Harding, Brian J. ; Alken, Patrick ; Maute, Astrid ; Immel, Thomas J.</creator><creatorcontrib>Wu, Yen-Jung J. ; Mende, Stephen ; Harding, Brian J. ; Alken, Patrick ; Maute, Astrid ; Immel, Thomas J.</creatorcontrib><description>The Ion Velocity Meter (IVM) on NASA’s Ionospheric Connection Explorer (ICON) reports the in-situ ion density, ion temperature and 3-component ion drift velocity, retrieved from measurements by a retarding potential analyzer and an ion drift meter. ICON was launched during a deep solar minimum in late 2019, followed by a solar quiet (F10.7 &lt; 80) period until September 2020. In order to quantify the uncertainties in the IVM’s drift velocity in a low plasma density environment, we compared IVM’s vertical drift velocity with eastward electric field (EEF) obtained from Swarm’s equatorial electrojet current measurements, the vertical drift from ground-based incoherent scatter radar (ISR) at Jicamarca Radio Observatory (JRO) and from Jicamarca Unattended Long-term studies of Ionosphere and Atmosphere (JULIA) coherent mode. The main results of this study show that (1) the vertical drift derived from Swarm’s EEF and ISR are in good agreement with the zonal electric field derived from JULIA’s vertical drift regardless of the F10.7 value. (2) The zonal electric field derived from IVM’s meridional drift is in good agreement with Swarm’s EEF in 2021, whereas the distribution is highly scattered in the deepest solar minimum in 2020. (3) An ad hoc IVM correction based on the 24-hour running mean of meridional drift can bring the IVM data into better agreement with Swarm and JULIA. An additional quality control based on O + fractional composition may be needed for some studies using IVM’s vertical drift. By using the same methodology presented in this work, future missions could calibrate their drift measurements to facilitate meaningful integration with ICON/IVM observations through the comparision with ground-based measurements.</description><identifier>ISSN: 0038-6308</identifier><identifier>EISSN: 1572-9672</identifier><identifier>DOI: 10.1007/s11214-023-00993-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Accuracy ; Aerospace Technology and Astronautics ; Astrophysics and Astroparticles ; Electric fields ; Electrojets ; Equatorial currents ; Equatorial electrojet ; Incoherent scatter radar ; Ion density ; Ion density (concentration) ; Ion drift velocity ; Ion temperature ; Ion velocity ; Ionosphere ; Ions ; Observatories ; Physics ; Physics and Astronomy ; Planetology ; Plasma density ; Quality control ; Radar ; Radio ; Satellites ; Solar minimum ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Velocity ; Vertical drift</subject><ispartof>Space science reviews, 2023-09, Vol.219 (6), p.47, Article 47</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6ebcd2c99f2ce0e3e3663cf29123430c5dc415472a59f6627c0d5e1f00ad05f93</citedby><cites>FETCH-LOGICAL-c319t-6ebcd2c99f2ce0e3e3663cf29123430c5dc415472a59f6627c0d5e1f00ad05f93</cites><orcidid>0000-0001-5596-4403</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11214-023-00993-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11214-023-00993-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Wu, Yen-Jung J.</creatorcontrib><creatorcontrib>Mende, Stephen</creatorcontrib><creatorcontrib>Harding, Brian J.</creatorcontrib><creatorcontrib>Alken, Patrick</creatorcontrib><creatorcontrib>Maute, Astrid</creatorcontrib><creatorcontrib>Immel, Thomas J.</creatorcontrib><title>Cross-Validation of the Ionospheric Vertical Drift Measurements Based on ICON/IVM, Swarm, and the Ground-Based Radar at the Jicamarca Radio Observatory</title><title>Space science reviews</title><addtitle>Space Sci Rev</addtitle><description>The Ion Velocity Meter (IVM) on NASA’s Ionospheric Connection Explorer (ICON) reports the in-situ ion density, ion temperature and 3-component ion drift velocity, retrieved from measurements by a retarding potential analyzer and an ion drift meter. ICON was launched during a deep solar minimum in late 2019, followed by a solar quiet (F10.7 &lt; 80) period until September 2020. In order to quantify the uncertainties in the IVM’s drift velocity in a low plasma density environment, we compared IVM’s vertical drift velocity with eastward electric field (EEF) obtained from Swarm’s equatorial electrojet current measurements, the vertical drift from ground-based incoherent scatter radar (ISR) at Jicamarca Radio Observatory (JRO) and from Jicamarca Unattended Long-term studies of Ionosphere and Atmosphere (JULIA) coherent mode. The main results of this study show that (1) the vertical drift derived from Swarm’s EEF and ISR are in good agreement with the zonal electric field derived from JULIA’s vertical drift regardless of the F10.7 value. (2) The zonal electric field derived from IVM’s meridional drift is in good agreement with Swarm’s EEF in 2021, whereas the distribution is highly scattered in the deepest solar minimum in 2020. (3) An ad hoc IVM correction based on the 24-hour running mean of meridional drift can bring the IVM data into better agreement with Swarm and JULIA. An additional quality control based on O + fractional composition may be needed for some studies using IVM’s vertical drift. By using the same methodology presented in this work, future missions could calibrate their drift measurements to facilitate meaningful integration with ICON/IVM observations through the comparision with ground-based measurements.</description><subject>Accuracy</subject><subject>Aerospace Technology and Astronautics</subject><subject>Astrophysics and Astroparticles</subject><subject>Electric fields</subject><subject>Electrojets</subject><subject>Equatorial currents</subject><subject>Equatorial electrojet</subject><subject>Incoherent scatter radar</subject><subject>Ion density</subject><subject>Ion density (concentration)</subject><subject>Ion drift velocity</subject><subject>Ion temperature</subject><subject>Ion velocity</subject><subject>Ionosphere</subject><subject>Ions</subject><subject>Observatories</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Planetology</subject><subject>Plasma density</subject><subject>Quality control</subject><subject>Radar</subject><subject>Radio</subject><subject>Satellites</subject><subject>Solar minimum</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Velocity</subject><subject>Vertical drift</subject><issn>0038-6308</issn><issn>1572-9672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc9OGzEQxi0EEgH6Aj1Z4hrD2N4_8RFSoKkCkaDN1TL2mGyUrFPbacWT9HW7m63UG6eRZr7vN6P5CPnM4YoD1NeJc8ELBkIyAKUkU0dkxMtaMFXV4piMAOSEVRImp-QspTVAb6tH5M80hpTY0mwaZ3ITWho8zSuks9CGtFthbCxdYsyNNRv6JTY-00c0aR9xi21O9NYkdLTzzaaLp-vZ8nFMX36buB1T07oD6SGGfevYIHw2zkRq8mHyrYNuTbSmbzeBLl4Txl8mh_h-QU682ST89K-ekx_3d9-nX9l88TCb3syZlVxlVuGrdcIq5YVFQImyqqT1QnEhCwm2dLbgZVELUypfVaK24ErkHsA4KL2S5-Ry4O5i-LnHlPU67GPbrdRiUnGl6qKQnUoMKtt_K6LXu9h0l79rDrr_pB4C0F0A-hCA7tFyMKVO3L5h_I_-wPUXXCCI9w</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Wu, Yen-Jung J.</creator><creator>Mende, Stephen</creator><creator>Harding, Brian J.</creator><creator>Alken, Patrick</creator><creator>Maute, Astrid</creator><creator>Immel, Thomas J.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-5596-4403</orcidid></search><sort><creationdate>20230901</creationdate><title>Cross-Validation of the Ionospheric Vertical Drift Measurements Based on ICON/IVM, Swarm, and the Ground-Based Radar at the Jicamarca Radio Observatory</title><author>Wu, Yen-Jung J. ; Mende, Stephen ; Harding, Brian J. ; Alken, Patrick ; Maute, Astrid ; Immel, Thomas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6ebcd2c99f2ce0e3e3663cf29123430c5dc415472a59f6627c0d5e1f00ad05f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Aerospace Technology and Astronautics</topic><topic>Astrophysics and Astroparticles</topic><topic>Electric fields</topic><topic>Electrojets</topic><topic>Equatorial currents</topic><topic>Equatorial electrojet</topic><topic>Incoherent scatter radar</topic><topic>Ion density</topic><topic>Ion density (concentration)</topic><topic>Ion drift velocity</topic><topic>Ion temperature</topic><topic>Ion velocity</topic><topic>Ionosphere</topic><topic>Ions</topic><topic>Observatories</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Planetology</topic><topic>Plasma density</topic><topic>Quality control</topic><topic>Radar</topic><topic>Radio</topic><topic>Satellites</topic><topic>Solar minimum</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Velocity</topic><topic>Vertical drift</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yen-Jung J.</creatorcontrib><creatorcontrib>Mende, Stephen</creatorcontrib><creatorcontrib>Harding, Brian J.</creatorcontrib><creatorcontrib>Alken, Patrick</creatorcontrib><creatorcontrib>Maute, Astrid</creatorcontrib><creatorcontrib>Immel, Thomas J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Space science reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yen-Jung J.</au><au>Mende, Stephen</au><au>Harding, Brian J.</au><au>Alken, Patrick</au><au>Maute, Astrid</au><au>Immel, Thomas J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross-Validation of the Ionospheric Vertical Drift Measurements Based on ICON/IVM, Swarm, and the Ground-Based Radar at the Jicamarca Radio Observatory</atitle><jtitle>Space science reviews</jtitle><stitle>Space Sci Rev</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>219</volume><issue>6</issue><spage>47</spage><pages>47-</pages><artnum>47</artnum><issn>0038-6308</issn><eissn>1572-9672</eissn><abstract>The Ion Velocity Meter (IVM) on NASA’s Ionospheric Connection Explorer (ICON) reports the in-situ ion density, ion temperature and 3-component ion drift velocity, retrieved from measurements by a retarding potential analyzer and an ion drift meter. ICON was launched during a deep solar minimum in late 2019, followed by a solar quiet (F10.7 &lt; 80) period until September 2020. In order to quantify the uncertainties in the IVM’s drift velocity in a low plasma density environment, we compared IVM’s vertical drift velocity with eastward electric field (EEF) obtained from Swarm’s equatorial electrojet current measurements, the vertical drift from ground-based incoherent scatter radar (ISR) at Jicamarca Radio Observatory (JRO) and from Jicamarca Unattended Long-term studies of Ionosphere and Atmosphere (JULIA) coherent mode. The main results of this study show that (1) the vertical drift derived from Swarm’s EEF and ISR are in good agreement with the zonal electric field derived from JULIA’s vertical drift regardless of the F10.7 value. (2) The zonal electric field derived from IVM’s meridional drift is in good agreement with Swarm’s EEF in 2021, whereas the distribution is highly scattered in the deepest solar minimum in 2020. (3) An ad hoc IVM correction based on the 24-hour running mean of meridional drift can bring the IVM data into better agreement with Swarm and JULIA. An additional quality control based on O + fractional composition may be needed for some studies using IVM’s vertical drift. By using the same methodology presented in this work, future missions could calibrate their drift measurements to facilitate meaningful integration with ICON/IVM observations through the comparision with ground-based measurements.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11214-023-00993-9</doi><orcidid>https://orcid.org/0000-0001-5596-4403</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0038-6308
ispartof Space science reviews, 2023-09, Vol.219 (6), p.47, Article 47
issn 0038-6308
1572-9672
language eng
recordid cdi_proquest_journals_2861997443
source Springer Nature - Complete Springer Journals
subjects Accuracy
Aerospace Technology and Astronautics
Astrophysics and Astroparticles
Electric fields
Electrojets
Equatorial currents
Equatorial electrojet
Incoherent scatter radar
Ion density
Ion density (concentration)
Ion drift velocity
Ion temperature
Ion velocity
Ionosphere
Ions
Observatories
Physics
Physics and Astronomy
Planetology
Plasma density
Quality control
Radar
Radio
Satellites
Solar minimum
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Velocity
Vertical drift
title Cross-Validation of the Ionospheric Vertical Drift Measurements Based on ICON/IVM, Swarm, and the Ground-Based Radar at the Jicamarca Radio Observatory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A33%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross-Validation%20of%20the%20Ionospheric%20Vertical%20Drift%20Measurements%20Based%20on%20ICON/IVM,%20Swarm,%20and%20the%20Ground-Based%20Radar%20at%20the%20Jicamarca%20Radio%20Observatory&rft.jtitle=Space%20science%20reviews&rft.au=Wu,%20Yen-Jung%20J.&rft.date=2023-09-01&rft.volume=219&rft.issue=6&rft.spage=47&rft.pages=47-&rft.artnum=47&rft.issn=0038-6308&rft.eissn=1572-9672&rft_id=info:doi/10.1007/s11214-023-00993-9&rft_dat=%3Cproquest_cross%3E2861997443%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2861997443&rft_id=info:pmid/&rfr_iscdi=true